PFASST-ER: combining the parallel full approximation scheme in space and time with parallelization across the method

To extend prevailing scaling limits when solving time-dependent partial differential equations, the parallel full approximation scheme in space and time (PFASST) has been shown to be a promising parallel-in-time integrator. Similar to space–time multigrid, PFASST is able to compute multiple time-ste...

Full description

Saved in:
Bibliographic Details
Published inComputing and visualization in science Vol. 23; no. 1-4
Main Authors Schöbel, Ruth, Speck, Robert
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To extend prevailing scaling limits when solving time-dependent partial differential equations, the parallel full approximation scheme in space and time (PFASST) has been shown to be a promising parallel-in-time integrator. Similar to space–time multigrid, PFASST is able to compute multiple time-steps simultaneously and is therefore in particular suitable for large-scale applications on high performance computing systems. In this work we couple PFASST with a parallel spectral deferred correction (SDC) method, forming an unprecedented doubly time-parallel integrator. While PFASST provides global, large-scale “parallelization across the step”, the inner parallel SDC method allows integrating each individual time-step “parallel across the method” using a diagonalized local Quasi-Newton solver. This new method, which we call “PFASST with Enhanced concuRrency” (PFASST-ER), therefore exposes even more temporal concurrency. For two challenging nonlinear reaction-diffusion problems, we show that PFASST-ER works more efficiently than the classical variants of PFASST and can use more processors than time-steps.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1432-9360
1433-0369
DOI:10.1007/s00791-020-00330-5