Air-gap-embedded robust hazy films to reduce the screen-door effect in virtual reality displays

We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 16; pp. 875 - 8757
Main Authors Cho, Won Seok, Park, Jae Yong, Choi, Chung Sock, Cho, Sang-Hwan, Baek, Sangwon, Lee, Jong-Lam
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect (SDE) in virtual reality (VR) displays. Oxygen plasma was treated with a polyethylene terephthalate substrate to produce wavelength-scale micropatterns. These micropatterns induce an effective haze, but it is easily destroyed by a very small external scratch. Such a problem could be solved by coating the patterns with poly(dimethylsiloxane) (PDMS). The viscosity of PDMS, controlled by the ratio of the base and curing agents, plays a key role in determining the size of air-gaps at the valleys of micropatterns. As the ratio of base agent increases to 40, the average haze abruptly increased from 0.9% to 88.6% in visible wavelengths, while the average total transmittance maintained was between 89.8 and 91.7%. The origin of air-gap-induced haze is confirmed by numerical simulations. The hazy film remarkably reduced the SDE of the VR display from 30.27% to 4.83% for red color, from 21.82% to 2.58% for green, and from 26.02% to 3.38% for blue, as the size of air-gaps increases from 0 to 406 ± 91 nm. No defects were found after 10 000 bending cycles with a bending radius of 3 mm. We report a way to make an air-gap-embedded flexible film to reduce the screen-door effect in virtual reality displays.
Bibliography:10.1039/c9nr10615d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2040-3364
2040-3372
DOI:10.1039/c9nr10615d