Thermoregulation in fish
Thermoregulation is critical for survival and animals therefore employ strategies to keep their body temperature within a physiological range. As ectotherms, fish exclusively rely on behavioral strategies for thermoregulation. Different species of fish seek out their specific optimal temperatures th...
Saved in:
Published in | Molecular and cellular endocrinology Vol. 518; p. 110986 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thermoregulation is critical for survival and animals therefore employ strategies to keep their body temperature within a physiological range. As ectotherms, fish exclusively rely on behavioral strategies for thermoregulation. Different species of fish seek out their specific optimal temperatures through thermal navigation by biasing behavioral output based on experienced environmental temperatures. Like other vertebrates, fish sense water temperature using thermoreceptors in trigeminal and dorsal root ganglia neurons that innervate the skin. Recent research in larval zebrafish has revealed how neural circuits subsequently transform this sensation of temperature into thermoregulatory behaviors. Across fish species, thermoregulatory strategies rely on a modulation of swim vigor based on current temperature and a modulation of turning based on temperature change. Interestingly, temperature preferences are not fixed but depend on other environmental cues and internal states. The following review is intended as an overview on the current knowledge as well as open questions in fish thermoregulation.
•As ectothermic animals fish exclusively rely on behavior for thermoregulation.•Temperature preferences vary widely across fish species but strategies are conserved.•Temperature modulates swim speed and temperature change modulates turning.•Zebrafish research identified the neural substrate and logic of thermoregulation.•Comparing among phyla reveals convergent and divergent principles of thermoregulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0303-7207 1872-8057 1872-8057 |
DOI: | 10.1016/j.mce.2020.110986 |