Lasing properties of PbSnTe/PbTe double hetero mid-infrared laser diodes grown by temperature difference method under controlled vapor pressure liquid-phase epitaxy

PbSnTe/PbTe double hetero-diode structures were grown by temperature difference method under controlled vapor pressure (TDM–CVP) liquid-phase epitaxy (LPE). These laser diode (LD) structures were of the PbTe (Bi)/Pb1−xSnxTe/PbTe (undoped substrate) double hetero (DH) type. The peak shift of the wave...

Full description

Saved in:
Bibliographic Details
Published inMaterials science in semiconductor processing Vol. 27; pp. 159 - 162
Main Authors Yasuda, Arata, Suto, Ken, Nishizawa, Jun-ichi
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:PbSnTe/PbTe double hetero-diode structures were grown by temperature difference method under controlled vapor pressure (TDM–CVP) liquid-phase epitaxy (LPE). These laser diode (LD) structures were of the PbTe (Bi)/Pb1−xSnxTe/PbTe (undoped substrate) double hetero (DH) type. The peak shift of the wavelength emitted by the fabricated diodes was recorded and it was found that they successfully lased from 15K to over 77K (liquid nitrogen temperature) at a slightly lower threshold current density than standard LPEs fabricated via the slow-cooling method. In addition, the lasing peak wavelength was longer than spontaneous emissions. The laser spectra of diodes with varying Sn concentrations (x) in the active layer were observed, and their intensities were recorded as a function of the wavelength. Very sharp lasing spectra were obtained between 6.5μm and 9.4μm (x=0–0.11), clarifying that the stoichiometry control possible with TDM–CVP is suitable for fabricating optical devices. In addition, it was demonstrated that TDM–CVP is appropriate for fabricating infrared optical devices constructed from PbxSn1−xTe systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1369-8001
1873-4081
DOI:10.1016/j.mssp.2014.06.041