Weak coupling limit for Schrödinger-type operators with degenerate kinetic energy for a large class of potentials

We improve results by Frank, Hainzl, Naboko, and Seiringer (J Geom Anal 17(4):559–567, 2007) and Hainzl and Seiringer (Math Nachr 283(3):489–499, 2010) on the weak coupling limit of eigenvalues for Schrödinger-type operators whose kinetic energy vanishes on a codimension one submanifold. The main te...

Full description

Saved in:
Bibliographic Details
Published inLetters in mathematical physics Vol. 111; no. 2
Main Authors Cuenin, Jean-Claude, Merz, Konstantin
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We improve results by Frank, Hainzl, Naboko, and Seiringer (J Geom Anal 17(4):559–567, 2007) and Hainzl and Seiringer (Math Nachr 283(3):489–499, 2010) on the weak coupling limit of eigenvalues for Schrödinger-type operators whose kinetic energy vanishes on a codimension one submanifold. The main technical innovation that allows us to go beyond the potentials considered in Frank, Hainzl, Naboko, and Seiringer (2007), Hainzl and Seiringer (2010) is the use of the Tomas–Stein theorem.
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-021-01385-2