Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution
Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans (A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30℃. Maintaining a stable pH value during biodesulfu...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 20; no. 10; pp. 925 - 930 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2013
Springer Nature B.V School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China%China Metallurgical Mining Corporation, Beijing 100011, China%Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans (A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30℃. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores. |
---|---|
Bibliography: | titanomagnetite; vanadium; biodesulfurization; Acidithiobacillus ferrooxidans; citric acid; disodium hydrogenphosphate Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans (A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30℃. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores. 11-5787/T ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-4799 1869-103X |
DOI: | 10.1007/s12613-013-0816-2 |