Differential Induction of NAD(P)H:Quinone Oxidoreductase by Anti-Carcinogenic Organosulfides from Garlic

This study was undertaken to elucidate the mechanism of organ specificity and differential efficacy of garlic organosulfides (OSCs) [diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl trisulfide (DATS), dipropyl sulfide (DPS) and dipropyl disulfide (DPDS)] in preventing benzo(a)pyrene (BP)-ind...

Full description

Saved in:
Bibliographic Details
Published inBiochemical and biophysical research communications Vol. 244; no. 3; pp. 917 - 920
Main Authors Singh, Shivendra V., Pan, Su Shu, Srivastava, Sanjay K., Xia, Hong, Hu, Xun, Zaren, Howard A., Orchard, John L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.03.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study was undertaken to elucidate the mechanism of organ specificity and differential efficacy of garlic organosulfides (OSCs) [diallyl sulfide (DAS), diallyl disulfide (DADS), diallyl trisulfide (DATS), dipropyl sulfide (DPS) and dipropyl disulfide (DPDS)] in preventing benzo(a)pyrene (BP)-induced tumorigenesis in mice. The results of the present study reveal a good correlation between chemopreventive efficacies of garlic OSCs and their inductive effects on the expression of NAD(P)H:quinone oxidoreductase (NQO), an enzyme implicated in the detoxification of activated quinone metabolites of BP. Treatment of mice with DADS and DATS, which are potent inhibitors of BP-induced forestomach tumorigenesis, resulted in a statistically significant increase (2.4- and 1.5-fold, respectively) in forestomach NQO activity. In addition, DADS and DATS were much more potent inducers of forestomach NQO activity than DAS, which is a weak inhibitor of BP-induced forestomach tumorigenesis than the former compounds. Propyl-group containing OSCs (DPS and DPDS), which do not inhibit BP-induced tumorigenesis, did not affect forestomach NQO activity. Similar to forestomach, a good correlation was also observed between effects of these OSCs against BP-induced pulmonary tumorigenesis and their effects on NQO expression in the lung. For example, treatment of mice with DAS, which is a potent inhibitor of BP-induced pulmonary tumorigenesis, resulted in about 3.2-fold increase in pulmonary NQO activity. On the other hand, this activity was increased by about 1.5-fold upon DATS administration, which does not inhibit BP-induced cancer of the lung. In conclusion, our results suggest that induction of NQO may be important in anti-cancer effects of garlic OSCs.
Bibliography:T10
1997061419
Q60
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.1998.8352