Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate
Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overco...
Saved in:
Published in | Nature photonics Vol. 15; no. 1; pp. 28 - 35 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overcomes the modulation bandwidth limit. The laser features a high modulation efficiency because of its large optical confinement in the active region and small differential gain reduction at a high injection current density. We achieve a 42 GHz relaxation oscillation frequency by using a laser with a 50-μm-long active region. The cavity, designed to have a short photon lifetime, suppresses the damping effect while keeping the threshold carrier density low, resulting in a 60 GHz intrinsic 3 dB bandwidth (
f
3dB
). By employing the photon–photon resonance at 95 GHz due to optical feedback from an integrated output waveguide, we achieve an
f
3dB
of 108 GHz and demonstrate 256 Gbit s
−1
four-level pulse-amplitude modulations with a 475 fJ bit
−1
energy cost of the direct-current electrical input.
Directly modulated membrane distributed reflector lasers are fabricated on a silicon carbide platform. The 3 dB bandwidth, four-level pulse-amplitude modulation speed and operating energy for transmitting one bit are 108 GHz, 256 Gbit s
−1
and 475 fJ, respectively. |
---|---|
AbstractList | Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overcomes the modulation bandwidth limit. The laser features a high modulation efficiency because of its large optical confinement in the active region and small differential gain reduction at a high injection current density. We achieve a 42 GHz relaxation oscillation frequency by using a laser with a 50-μm-long active region. The cavity, designed to have a short photon lifetime, suppresses the damping effect while keeping the threshold carrier density low, resulting in a 60 GHz intrinsic 3 dB bandwidth (f3dB). By employing the photon–photon resonance at 95 GHz due to optical feedback from an integrated output waveguide, we achieve an f3dB of 108 GHz and demonstrate 256 Gbit s−1 four-level pulse-amplitude modulations with a 475 fJ bit−1 energy cost of the direct-current electrical input.Directly modulated membrane distributed reflector lasers are fabricated on a silicon carbide platform. The 3 dB bandwidth, four-level pulse-amplitude modulation speed and operating energy for transmitting one bit are 108 GHz, 256 Gbit s−1 and 475 fJ, respectively. Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overcomes the modulation bandwidth limit. The laser features a high modulation efficiency because of its large optical confinement in the active region and small differential gain reduction at a high injection current density. We achieve a 42 GHz relaxation oscillation frequency by using a laser with a 50-μm-long active region. The cavity, designed to have a short photon lifetime, suppresses the damping effect while keeping the threshold carrier density low, resulting in a 60 GHz intrinsic 3 dB bandwidth ( f 3dB ). By employing the photon–photon resonance at 95 GHz due to optical feedback from an integrated output waveguide, we achieve an f 3dB of 108 GHz and demonstrate 256 Gbit s −1 four-level pulse-amplitude modulations with a 475 fJ bit −1 energy cost of the direct-current electrical input. Directly modulated membrane distributed reflector lasers are fabricated on a silicon carbide platform. The 3 dB bandwidth, four-level pulse-amplitude modulation speed and operating energy for transmitting one bit are 108 GHz, 256 Gbit s −1 and 475 fJ, respectively. |
Author | Nakao, Ryo Fujii, Takuro Matsuo, Shinji Kakitsuka, Takaaki Yamaoka, Suguru Diamantopoulos, Nikolaos-Panteleimon Tanobe, Hiromasa Tsurugaya, Takuma Takeda, Koji Nishi, Hidetaka Hiraki, Tatsurou Koyama, Fumio Tsuchizawa, Tai Kanazawa, Shigeru |
Author_xml | – sequence: 1 givenname: Suguru orcidid: 0000-0002-6408-0084 surname: Yamaoka fullname: Yamaoka, Suguru email: suguru.yamaoka.hm@hco.ntt.co.jp organization: NTT Device Technology Labs, NTT Corporation – sequence: 2 givenname: Nikolaos-Panteleimon orcidid: 0000-0002-4253-3134 surname: Diamantopoulos fullname: Diamantopoulos, Nikolaos-Panteleimon organization: NTT Device Technology Labs, NTT Corporation – sequence: 3 givenname: Hidetaka surname: Nishi fullname: Nishi, Hidetaka organization: NTT Device Technology Labs, NTT Corporation – sequence: 4 givenname: Ryo surname: Nakao fullname: Nakao, Ryo organization: NTT Device Technology Labs, NTT Corporation – sequence: 5 givenname: Takuro orcidid: 0000-0002-8926-3979 surname: Fujii fullname: Fujii, Takuro organization: NTT Device Technology Labs, NTT Corporation – sequence: 6 givenname: Koji surname: Takeda fullname: Takeda, Koji organization: NTT Device Technology Labs, NTT Corporation – sequence: 7 givenname: Tatsurou surname: Hiraki fullname: Hiraki, Tatsurou organization: NTT Device Technology Labs, NTT Corporation – sequence: 8 givenname: Takuma surname: Tsurugaya fullname: Tsurugaya, Takuma organization: NTT Device Technology Labs, NTT Corporation – sequence: 9 givenname: Shigeru surname: Kanazawa fullname: Kanazawa, Shigeru organization: NTT Device Innovation Center, NTT Corporation – sequence: 10 givenname: Hiromasa surname: Tanobe fullname: Tanobe, Hiromasa organization: NTT Device Innovation Center, NTT Corporation – sequence: 11 givenname: Takaaki surname: Kakitsuka fullname: Kakitsuka, Takaaki organization: NTT Device Technology Labs, NTT Corporation, Graduate School of Information, Production and Systems, Waseda University – sequence: 12 givenname: Tai surname: Tsuchizawa fullname: Tsuchizawa, Tai organization: NTT Device Technology Labs, NTT Corporation – sequence: 13 givenname: Fumio surname: Koyama fullname: Koyama, Fumio organization: Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology – sequence: 14 givenname: Shinji surname: Matsuo fullname: Matsuo, Shinji organization: NTT Device Technology Labs, NTT Corporation |
BookMark | eNp9kL1uFTEQhS0UJJKQF0hlidphbO-PXaJAEqRINFBbs965uY52vcH2Ei0VLa_Jk2C4CCSKVDM6Ot_M0TlhR3GJxNi5hAsJ2rzOjWy7ToACAdADiO0ZO5Z9Y0VjrD76u5v2BTvJ-R6g1VapY1behkS-TBufl3GdsNDIZ5qHhJH4hJlS5o-h7LkE8-Pb9-ubr3zAOD6GsWpL5Mj34W4vyp7SjJPwSxxXX8KXUDaewxSqwD2mIYzE8zrkkuqLl-z5DqdMZ3_mKft09e7j5Y24_XD9_vLNrfC600XYvjXaD763BBaUNgpItdaT9LKD3dj31uOAXg4NkgItsUNqOgQ0I4G2-pS9Otx9SMvnlXJx98uaYn3pVNNraa3WprrMweXTknOinfOhYAlLrGHD5CS4Xx27Q8eudux-d-y2iqr_0IcUZkzb05A-QLma4x2lf6meoH4CKrmUKg |
CitedBy_id | crossref_primary_10_1016_j_mne_2024_100258 crossref_primary_10_3390_app11041801 crossref_primary_10_1002_qute_202100062 crossref_primary_10_1016_j_optlastec_2024_112127 crossref_primary_10_3390_photonics8020031 crossref_primary_10_1109_JQE_2023_3342180 crossref_primary_10_1109_JPHOT_2022_3189525 crossref_primary_10_1109_JLT_2022_3153648 crossref_primary_10_1109_JQE_2024_3424421 crossref_primary_10_1364_PRJ_516829 crossref_primary_10_1109_JQE_2024_3506392 crossref_primary_10_1109_JLT_2024_3366532 crossref_primary_10_1063_5_0191813 crossref_primary_10_3788_AOS241000 crossref_primary_10_1007_s10825_023_02060_6 crossref_primary_10_1063_5_0062500 crossref_primary_10_1109_JLT_2023_3237180 crossref_primary_10_1109_JPHOT_2020_3044931 crossref_primary_10_1109_JLT_2022_3203723 crossref_primary_10_1109_LPT_2021_3049859 crossref_primary_10_1021_acsanm_1c02696 crossref_primary_10_1109_LPT_2023_3263970 crossref_primary_10_1103_PhysRevApplied_20_034045 crossref_primary_10_1109_JLT_2022_3213524 crossref_primary_10_3390_opt5020016 crossref_primary_10_1016_j_egyai_2022_100210 crossref_primary_10_1038_s44172_024_00338_6 crossref_primary_10_1364_OE_462051 crossref_primary_10_1364_JOCN_522761 crossref_primary_10_53829_ntr202109fr1 crossref_primary_10_1063_5_0200861 crossref_primary_10_1364_AO_453171 crossref_primary_10_1016_j_optlastec_2021_107830 crossref_primary_10_1109_JPHOT_2022_3160157 crossref_primary_10_1007_s40843_022_2355_6 crossref_primary_10_1587_elex_20_20230594 crossref_primary_10_1109_LPT_2023_3243638 crossref_primary_10_1364_OE_529049 crossref_primary_10_1002_lpor_202401751 crossref_primary_10_1364_OE_469735 crossref_primary_10_1088_1361_6463_ad26cd crossref_primary_10_1109_JQE_2023_3238748 crossref_primary_10_1109_JQE_2024_3475745 crossref_primary_10_1364_JOCN_499341 crossref_primary_10_1063_5_0230870 crossref_primary_10_53829_ntr202305ra1 crossref_primary_10_1109_JLT_2023_3311716 crossref_primary_10_1109_JQE_2021_3111399 crossref_primary_10_1109_JLT_2023_3239614 crossref_primary_10_1109_JLT_2022_3212473 crossref_primary_10_1109_JLT_2023_3261421 crossref_primary_10_1016_j_optlastec_2025_112601 crossref_primary_10_1038_s41566_020_00739_x crossref_primary_10_1109_LPT_2022_3233715 crossref_primary_10_35848_1347_4065_ad394d crossref_primary_10_1587_elex_20_20230057 crossref_primary_10_1109_JLT_2024_3437754 crossref_primary_10_1109_JPHOT_2023_3296203 crossref_primary_10_1364_OE_457436 crossref_primary_10_1364_PRJ_441791 crossref_primary_10_1002_lpor_202300549 crossref_primary_10_1088_2515_7647_adaf63 crossref_primary_10_1364_PRJ_529799 crossref_primary_10_1109_JLT_2022_3172246 crossref_primary_10_1109_JSTQE_2021_3122552 crossref_primary_10_1063_5_0159166 crossref_primary_10_1364_OE_438652 crossref_primary_10_1063_5_0226125 crossref_primary_10_1109_JLT_2023_3240572 crossref_primary_10_1038_s41566_021_00914_8 crossref_primary_10_1088_1361_6528_ac2f5e crossref_primary_10_1088_1361_6463_acc4d4 crossref_primary_10_1038_s41534_021_00394_2 crossref_primary_10_3788_COL202422_081401 crossref_primary_10_1016_j_porgcoat_2023_108004 crossref_primary_10_1038_s41928_023_01048_1 crossref_primary_10_1109_JLT_2024_3484571 crossref_primary_10_1088_1674_4926_42_4_041306 crossref_primary_10_1088_1674_4926_44_11_112301 crossref_primary_10_1109_JSTQE_2024_3474797 crossref_primary_10_1021_acs_cgd_3c00633 crossref_primary_10_1364_OL_457568 crossref_primary_10_1038_s42005_024_01620_x crossref_primary_10_1364_OE_526165 crossref_primary_10_1364_OE_468192 crossref_primary_10_5104_jiep_26_241 crossref_primary_10_3390_photonics10121298 crossref_primary_10_1002_adfm_202405559 crossref_primary_10_1016_j_icheatmasstransfer_2022_106478 crossref_primary_10_3788_CJL241173 crossref_primary_10_1364_OE_486707 crossref_primary_10_1063_5_0048712 crossref_primary_10_1088_1402_4896_ace93b crossref_primary_10_1109_JPHOT_2023_3343372 crossref_primary_10_1109_JLT_2023_3242371 crossref_primary_10_53829_ntr202103sr2 crossref_primary_10_1364_JOSAB_438329 crossref_primary_10_5104_jiep_26_590 crossref_primary_10_1587_elex_18_20210239 crossref_primary_10_1364_OL_510237 crossref_primary_10_3390_photonics8040130 crossref_primary_10_1364_AO_494901 crossref_primary_10_3788_AOS240976 crossref_primary_10_1016_j_optlastec_2024_111821 crossref_primary_10_1364_OE_462626 crossref_primary_10_1364_OPTICA_489894 crossref_primary_10_1109_JSTQE_2022_3181939 crossref_primary_10_3390_app11094284 crossref_primary_10_1587_elex_21_20240391 crossref_primary_10_1038_s41377_021_00697_1 crossref_primary_10_1364_OL_486089 crossref_primary_10_1109_JLT_2023_3301044 crossref_primary_10_1364_OE_418952 crossref_primary_10_1109_JLT_2023_3265084 crossref_primary_10_1109_JSTQE_2021_3126124 crossref_primary_10_3390_app112311096 |
Cites_doi | 10.1109/68.300164 10.1109/JLT.2016.2639542 10.1049/el:19921384 10.1364/OL.44.000009 10.1109/JLT.2019.2894173 10.1109/JLT.2019.2897480 10.1109/LPT.2011.2179530 10.1109/JLT.2016.2542579 10.1063/1.96810 10.1109/3.720235 10.1109/JPHOT.2015.2477511 10.1109/JLT.2017.2743211 10.1109/LPT.2007.903530 10.1063/1.4868576 10.1364/AOP.10.000567 10.1109/LPT.2014.2384520 10.1109/JSTQE.2017.2708606 10.1109/JLT.2016.2600591 10.1109/JLT.2003.822157 10.1109/JLT.2017.2650678 10.1109/68.53244 10.1049/el:19970335 10.1109/JLT.2018.2890118 10.1109/3.199289 10.1364/OE.24.018346 10.1049/el:20031018 10.7567/APEX.7.022102 10.1109/JSTQE.2009.2015194 10.1109/JLT.2017.2651947 10.1109/JSTQE.2013.2238509 10.1109/JLT.2016.2632164 10.1109/JLT.2018.2876732 10.1049/el.2014.0797 10.1109/ISLC.2010.5642646 10.1002/9781118148167 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION 7QO 7SP 7U5 8FD 8FE 8FG 8FH AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ H8D HCIFZ L7M LK8 M7P P5Z P62 P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1038/s41566-020-00700-y |
DatabaseName | CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Biological Sciences Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1749-4893 |
EndPage | 35 |
ExternalDocumentID | 10_1038_s41566_020_00700_y |
GroupedDBID | -~X 0R~ 123 29M 39C 4.4 5BI 5M7 5S5 70F 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABZEH ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ I-F LK8 M7P NNMJJ O9- ODYON P2P P62 Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7QO 7SP 7U5 8FD AZQEC DWQXO FR3 GNUQQ H8D L7M P64 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c363t-97583cbc79e09023820e259ce1c160fd779cabac1b4ae2031a6ae46a0a8de0393 |
IEDL.DBID | BENPR |
ISSN | 1749-4885 |
IngestDate | Tue Aug 12 07:26:44 EDT 2025 Tue Jul 01 03:06:59 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Fri Feb 21 02:41:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-97583cbc79e09023820e259ce1c160fd779cabac1b4ae2031a6ae46a0a8de0393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8926-3979 0000-0002-6408-0084 0000-0002-4253-3134 |
PQID | 2473199338 |
PQPubID | 546300 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2473199338 crossref_citationtrail_10_1038_s41566_020_00700_y crossref_primary_10_1038_s41566_020_00700_y springer_journals_10_1038_s41566_020_00700_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature photonics |
PublicationTitleAbbrev | Nat. Photonics |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Uomi, Sasaki, Tsuchiya, Nakano, Chinone (CR3) 1990; 2 Diamantopoulos (CR39) 2019; 44 Kobayashi (CR12) 2013; 19 Baeuerle (CR20) 2019; 37 Tucker, Wiesenfeld, Downey, Bowers (CR23) 1986; 48 Kreissl (CR28) 2012; 24 Matsui (CR14) 2016; 34 Lange (CR19) 2017; 36 Matsui, Murai, Arahira, Ogawa, Suzuki (CR7) 1998; 34 Kjebon (CR25) 1997; 33 CR38 CR37 Nishi (CR41) 2015; 7 Chen (CR1) 2016; 34 Xu (CR34) 2014; 115 CR11 Dalir, Koyama (CR29) 2014; 7 CR33 Nakahara (CR35) 2014; 50 Estaran (CR18) 2019; 37 Diamantopoulos (CR36) 2019; 37 Nishi (CR15) 2016; 24 Abbasi (CR30) 2017; 23 Nakahara (CR8) 2004; 22 Kito, Otsuka, Ishino, Fujihara, Matsui (CR6) 1994; 6 Kanazawa (CR16) 2017; 35 Nakahara (CR13) 2015; 27 Nakahara (CR9) 2007; 19 Ozolins (CR17) 2017; 35 CR27 CR22 Matsui (CR31) 2017; 35 Matsuo, Kakitsuka (CR32) 2018; 10 CR43 CR42 Bach (CR26) 2003; 39 CR40 Sasada (CR2) 2019; 37 Morton (CR4) 1992; 28 Uomi, Aoki, Tsuchiya, Takai (CR5) 1993; 29 Kuchta (CR24) 2015; 27 Otsubo (CR10) 2009; 15 Ogiso (CR21) 2017; 35 K Uomi (700_CR3) 1990; 2 S Kanazawa (700_CR16) 2017; 35 JM Estaran (700_CR18) 2019; 37 K Nakahara (700_CR9) 2007; 19 K Otsubo (700_CR10) 2009; 15 H Nishi (700_CR15) 2016; 24 Y Ogiso (700_CR21) 2017; 35 K Uomi (700_CR5) 1993; 29 RS Tucker (700_CR23) 1986; 48 M Kito (700_CR6) 1994; 6 NP Diamantopoulos (700_CR39) 2019; 44 NP Diamantopoulos (700_CR36) 2019; 37 Y Matsui (700_CR7) 1998; 34 DM Kuchta (700_CR24) 2015; 27 S Matsuo (700_CR32) 2018; 10 700_CR38 H Nishi (700_CR41) 2015; 7 K Nakahara (700_CR35) 2014; 50 700_CR37 B Baeuerle (700_CR20) 2019; 37 A Abbasi (700_CR30) 2017; 23 700_CR11 700_CR33 W Kobayashi (700_CR12) 2013; 19 S Lange (700_CR19) 2017; 36 PA Morton (700_CR4) 1992; 28 H Dalir (700_CR29) 2014; 7 O Kjebon (700_CR25) 1997; 33 K Nakahara (700_CR13) 2015; 27 Y Matsui (700_CR31) 2017; 35 Ozolins (700_CR17) 2017; 35 J Chen (700_CR1) 2016; 34 700_CR27 Y Matsui (700_CR14) 2016; 34 L Bach (700_CR26) 2003; 39 700_CR43 700_CR22 N Sasada (700_CR2) 2019; 37 700_CR42 700_CR40 K Nakahara (700_CR8) 2004; 22 J Kreissl (700_CR28) 2012; 24 C Xu (700_CR34) 2014; 115 |
References_xml | – volume: 6 start-page: 690 year: 1994 end-page: 693 ident: CR6 article-title: Enhanced relaxation oscillation frequency of 1.3 μm strained-layer multiquantum well lasers publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/68.300164 – ident: CR22 – volume: 35 start-page: 1450 year: 2017 end-page: 1455 ident: CR21 article-title: Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2639542 – volume: 27 start-page: 577 year: 2015 end-page: 580 ident: CR24 article-title: A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link publication-title: J. Lightwave Technol. – ident: CR43 – volume: 28 start-page: 2156 year: 1992 end-page: 2157 ident: CR4 article-title: 25 GHz bandwidth 1.55 μm GaInAsP p-doped strained multiquantum-well lasers publication-title: Electron. Lett. doi: 10.1049/el:19921384 – volume: 44 start-page: 9 year: 2019 end-page: 12 ident: CR39 article-title: Amplifierless PAM-4/PAM-8 transmissions in O-band using a directly modulated laser for optical data-center interconnects publication-title: Opt. Lett. doi: 10.1364/OL.44.000009 – volume: 37 start-page: 1686 year: 2019 end-page: 1689 ident: CR2 article-title: Wide-temperature-range (25 °C to 80 °C) 53-GBaud PAM4 (106-Gb/s) operation of 1.3-μm directly modulated DFB lasers for 10-km transmission publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2894173 – volume: 37 start-page: 2050 year: 2019 end-page: 2057 ident: CR20 article-title: Reduced equalization needs of 100 GHz bandwidth plasmonic modulators publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2897480 – ident: CR37 – volume: 24 start-page: 362 year: 2012 end-page: 364 ident: CR28 article-title: Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL) publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2011.2179530 – volume: 34 start-page: 2677 year: 2016 end-page: 2683 ident: CR14 article-title: 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2542579 – volume: 48 start-page: 1707 year: 1986 end-page: 1709 ident: CR23 article-title: Propagation delays and transition times in pulse-modulated semiconductor lasers publication-title: Appl. Phys. Lett. doi: 10.1063/1.96810 – ident: CR33 – volume: 34 start-page: 1970 year: 1998 end-page: 1978 ident: CR7 article-title: Enhanced modulation bandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.720235 – volume: 7 start-page: 4900308 year: 2015 ident: CR41 article-title: Monolithic integration of InP wire and SiO waveguides on Si platform publication-title: IEEE Photon. J. doi: 10.1109/JPHOT.2015.2477511 – volume: 36 start-page: 97 year: 2017 end-page: 102 ident: CR19 article-title: 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2743211 – ident: CR40 – volume: 19 start-page: 1436 year: 2007 end-page: 1438 ident: CR9 article-title: 40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2007.903530 – ident: CR27 – ident: CR42 – volume: 115 start-page: 113501 year: 2014 ident: CR34 article-title: Temperature dependence of refractive indices for 4H- and 6H-SiC publication-title: J. Appl. Phys. doi: 10.1063/1.4868576 – volume: 10 start-page: 567 year: 2018 end-page: 643 ident: CR32 article-title: Low-operating-energy directly modulated lasers for short-distance optical interconnects publication-title: Adv. Opt. Photon. doi: 10.1364/AOP.10.000567 – volume: 27 start-page: 534 year: 2015 end-page: 536 ident: CR13 article-title: Direct modulation at 56 and 50 Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers publication-title: IEEE Photon.Technol. Lett. doi: 10.1109/LPT.2014.2384520 – volume: 23 start-page: 1501307 year: 2017 ident: CR30 article-title: Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2017.2708606 – volume: 34 start-page: 4954 year: 2016 end-page: 4964 ident: CR1 article-title: An energy efficient 56 Gbps PAM-4 VCSEL transmitter enabled by a 100 Gbps driver in 0.25 μm InP DHBT technology publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2600591 – ident: CR38 – volume: 22 start-page: 159 year: 2004 end-page: 165 ident: CR8 article-title: 12.5-Gb/s direct modulation up to 115 °C in 1.3-μm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.822157 – volume: 35 start-page: 397 year: 2017 end-page: 403 ident: CR31 article-title: 55 GHz bandwidth distributed reflector laser publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2650678 – volume: 2 start-page: 229 year: 1990 end-page: 230 ident: CR3 article-title: Ultralow chirp and high-speed 1.55 μm multiquantum well /4-shifted DFB lasers publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/68.53244 – ident: CR11 – volume: 33 start-page: 488 year: 1997 end-page: 489 ident: CR25 article-title: 30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength publication-title: Electron. Lett. doi: 10.1049/el:19970335 – volume: 37 start-page: 1214 year: 2019 end-page: 1224 ident: CR36 article-title: On the complexity reduction of the second-order Volterra nonlinear equalizer for IM/DD systems publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2890118 – volume: 29 start-page: 355 year: 1993 end-page: 360 ident: CR5 article-title: Dependence of high-speed properties on the number of quantum wells in 1.55 μm InGaAs-InGaAsP MQW /4-shifted DFB lasers publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.199289 – volume: 24 start-page: 18346 year: 2016 end-page: 18352 ident: CR15 article-title: Membrane distributed-reflector laser integrated with SiO -based spot-size converter on Si substrate publication-title: Opt. Express doi: 10.1364/OE.24.018346 – volume: 39 start-page: 1592 year: 2003 end-page: 1593 ident: CR26 article-title: Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design publication-title: Electron. Lett. doi: 10.1049/el:20031018 – volume: 7 start-page: 022102 year: 2014 ident: CR29 article-title: High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance publication-title: Appl. Phys. Express doi: 10.7567/APEX.7.022102 – volume: 15 start-page: 687 year: 2009 end-page: 693 ident: CR10 article-title: 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2009.2015194 – volume: 35 start-page: 1174 year: 2017 end-page: 1179 ident: CR17 article-title: 100 GHz externally modulated laser for optical interconnects publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2651947 – volume: 19 start-page: 1500908 year: 2013 ident: CR12 article-title: 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-Based DFB laser with a ridge waveguide structure publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2013.2238509 – volume: 35 start-page: 418 year: 2017 end-page: 422 ident: CR16 article-title: 214-Gb/s 4-PAM operation of flip-chip interconnection EADFB laser module publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2632164 – volume: 37 start-page: 178 year: 2019 end-page: 187 ident: CR18 article-title: 140/180/204-GBaud OOK transceiver for inter- and intra-data center connectivity publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2876732 – volume: 50 start-page: 947 year: 2014 end-page: 948 ident: CR35 article-title: 1.3 μm InGaAlAs asymmetric corrugationpitch-modulated DFB lasers with high mask margin at 28 Gbit/s publication-title: Electron. Lett. doi: 10.1049/el.2014.0797 – volume: 23 start-page: 1501307 year: 2017 ident: 700_CR30 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2017.2708606 – volume: 6 start-page: 690 year: 1994 ident: 700_CR6 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/68.300164 – volume: 115 start-page: 113501 year: 2014 ident: 700_CR34 publication-title: J. Appl. Phys. doi: 10.1063/1.4868576 – volume: 7 start-page: 022102 year: 2014 ident: 700_CR29 publication-title: Appl. Phys. Express doi: 10.7567/APEX.7.022102 – volume: 36 start-page: 97 year: 2017 ident: 700_CR19 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2743211 – volume: 33 start-page: 488 year: 1997 ident: 700_CR25 publication-title: Electron. Lett. doi: 10.1049/el:19970335 – volume: 15 start-page: 687 year: 2009 ident: 700_CR10 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2009.2015194 – volume: 35 start-page: 1450 year: 2017 ident: 700_CR21 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2639542 – volume: 24 start-page: 18346 year: 2016 ident: 700_CR15 publication-title: Opt. Express doi: 10.1364/OE.24.018346 – volume: 10 start-page: 567 year: 2018 ident: 700_CR32 publication-title: Adv. Opt. Photon. doi: 10.1364/AOP.10.000567 – volume: 37 start-page: 1214 year: 2019 ident: 700_CR36 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2890118 – ident: 700_CR11 doi: 10.1109/ISLC.2010.5642646 – ident: 700_CR43 – volume: 19 start-page: 1500908 year: 2013 ident: 700_CR12 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2013.2238509 – volume: 27 start-page: 577 year: 2015 ident: 700_CR24 publication-title: J. Lightwave Technol. – volume: 27 start-page: 534 year: 2015 ident: 700_CR13 publication-title: IEEE Photon.Technol. Lett. doi: 10.1109/LPT.2014.2384520 – ident: 700_CR33 – volume: 48 start-page: 1707 year: 1986 ident: 700_CR23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.96810 – volume: 35 start-page: 1174 year: 2017 ident: 700_CR17 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2651947 – ident: 700_CR37 – volume: 37 start-page: 1686 year: 2019 ident: 700_CR2 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2894173 – volume: 19 start-page: 1436 year: 2007 ident: 700_CR9 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2007.903530 – ident: 700_CR42 – volume: 37 start-page: 178 year: 2019 ident: 700_CR18 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2876732 – ident: 700_CR40 – volume: 34 start-page: 2677 year: 2016 ident: 700_CR14 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2542579 – volume: 44 start-page: 9 year: 2019 ident: 700_CR39 publication-title: Opt. Lett. doi: 10.1364/OL.44.000009 – volume: 22 start-page: 159 year: 2004 ident: 700_CR8 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.822157 – ident: 700_CR22 doi: 10.1002/9781118148167 – volume: 2 start-page: 229 year: 1990 ident: 700_CR3 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/68.53244 – volume: 39 start-page: 1592 year: 2003 ident: 700_CR26 publication-title: Electron. Lett. doi: 10.1049/el:20031018 – volume: 34 start-page: 4954 year: 2016 ident: 700_CR1 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2600591 – volume: 29 start-page: 355 year: 1993 ident: 700_CR5 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.199289 – volume: 35 start-page: 397 year: 2017 ident: 700_CR31 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2650678 – volume: 34 start-page: 1970 year: 1998 ident: 700_CR7 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.720235 – ident: 700_CR27 – volume: 37 start-page: 2050 year: 2019 ident: 700_CR20 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2897480 – volume: 28 start-page: 2156 year: 1992 ident: 700_CR4 publication-title: Electron. Lett. doi: 10.1049/el:19921384 – volume: 24 start-page: 362 year: 2012 ident: 700_CR28 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2011.2179530 – volume: 50 start-page: 947 year: 2014 ident: 700_CR35 publication-title: Electron. Lett. doi: 10.1049/el.2014.0797 – volume: 35 start-page: 418 year: 2017 ident: 700_CR16 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2632164 – ident: 700_CR38 – volume: 7 start-page: 4900308 year: 2015 ident: 700_CR41 publication-title: IEEE Photon. J. doi: 10.1109/JPHOT.2015.2477511 |
SSID | ssj0053922 |
Score | 2.6541421 |
Snippet | Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 28 |
SubjectTerms | 140/125 142/126 639/624/1020/1085 639/624/1020/1093 639/624/1020/1095 Active regions (lasers) Applied and Technical Physics Bandwidths Carrier density Conductivity Damping Electrical resistivity Energy costs Injection current Laser applications Lasers Membranes Optical feedback Photons Physics Physics and Astronomy Pulse amplitude modulation Quantum Physics Relaxation oscillations Semiconductor lasers Silicon Silicon carbide Silicon substrates Waveguides |
Title | Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate |
URI | https://link.springer.com/article/10.1038/s41566-020-00700-y https://www.proquest.com/docview/2473199338 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH_a2gsXGGyIslH5wA2sJXYSOye0TusqJKoJMWm3yF-RKrXpWIqm7rQr_yZ_Cc-OQwUSu8aJD3lfv_cN8L42winnGK1zYWiWWkl1USdU12j_am8wQ8b0y7yYXWefb_KbGHBrY1llrxODorZr42PkpywT3Bebcfnp9jv1W6N8djWu0NiHIapgKQcwnFzMr772ujhH68-6lsiSIqvmsW0m4fK0Da4L9e6Tn3mT0O3fpmmHN_9JkQbLMz2A5xEykrOOxi9hzzWv4EWEjyQKZ3sIm059LbdktbZ-KxeertwK3eHGEQTJCPSID7uSNJG_Hn9ezh6IVo29X1h8tm6IIn52MfWIcKWWFB1lPws2LJcg7WKJLNMQo-70wjrSor4Jc22P4Hp68e18RuNSBWp4wTe0RAeBG21E6XxJJkcE4NAFMi41aZHUVojSKK1MqjPlGIq8KpTLCpUoaZ1v5H0Ng2bduDdACscsEyznQtmMpU5JXiO6KDW3SuSFGEHa_8_KxInjfvHFsgqZby6rjgYV0qAKNKi2I_jw55vbbt7Gk2-f9GSqouy11Y5TRvCxJ93u-P-3vX36tmN4xnxBS4i_nMBgc_fDvUNEstFj2JfTyzEMz6aTyXwcmfA35yrhRg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN2JpAR_gBFYTO4mTA0II2G7p49RKvRk_JtJKu9nSbFUtJ678GX4Uv4QZJ2EFEr31Gic-ZD7PfON5Mfay9hosgBR1rr3I0lAKV9SJcDXav5oMZoyYHh4Vk5Ps82l-usF-DrUwlFY56MSoqMPC0x35jsy0omQzVb47-ypoahRFV4cRGh0s9mF1iS5b-3bvI8r3lZTjT8cfJqKfKiC8KtRSVMiQlXdeV0A5iQpNIKAP4CH1aZHUQevKW2d96jILEjFvCwtZYRNbBqBKVtz3BruZKbTkVJk-3h00f45cQ3YFmJXAg5H3RTqJKnfa6CgJctaow04iVn8bwjW7_ScgG-3c-B670xNU_r5D1H22Ac0Ddrcnq7xXBe1DtuyU5WzF54tAM8BwdQ5zdL4b4EjJkVZyuuTlaVL--v5jd_KNO9uEy2nAZ4uGW06dkgXxz7mdCXTLqfNsHGXB2-kMAdpwb8_dNABvUbvFLrqP2Mm1_OzHbLNZNPCE8QJkkFrmStuQyRRsqWrkMpVTweq80COWDv_T-L6_OY3ZmJkYZ1el6WRgUAYmysCsRuz1n2_Ouu4eV769PYjJ9Ce9NWtcjtibQXTr5f_v9vTq3V6wW5PjwwNzsHe0v8VuS0qliTc_22xzeX4Bz5ALLd3zCEDOvlw34n8DovkacQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYS48I-6UMAHOIHVxE7i5IAqoF22FFYVolJvxn-RVtrNlmZRtZy48kp9HJ6EseOwAoneeo0TS_F8nvnGM54BeFYb4ZRzjNa5MDRLbUl1USdU12j_am8wQ8T046QYH2fvT_KTDbjo78L4tMpeJwZFbRfGn5HvsExwn2zGy506pkUc7Y12T79S30HKR1r7dhodRA7d6hzdt_bVwR7K-jljo_3Pb8c0dhighhd8SStky9xoIyrn8xM5mkOH_oBxqUmLpLZCVEZpZVKdKccQ_6pQLitUokrr_K1WnPcabArvFQ1g883-5OhTbwdyZB6su45ZUdwmebyyk-AftMFtot518_V2Err62yyuue4_4dlg9Ua34Wakq-R1h687sOGau3ArUlcSFUN7D5ad6pytyHxhfUcwHJ27ObrijSNI0JFkEn_kS9Kk_PXj57vxd6JVY8-nFp8tGqKIr5tMPRudqxlFJ93XoQ2NLUg7nSFcG2LUmZ5aR1rUdaGm7n04vpLlfgCDZtG4LSCFY5YJlnOhbMZSp0peI7OpNLdK5IUYQtqvpzSx2rlvujGTIerOS9nJQKIMZJCBXA3hxZ9vTrtaH5e-vd2LScZ938o1Sofwshfdevj_sz28fLancB3RLj8cTA4fwQ3m82rCMdA2DJZn39xjJEZL_SQikMCXqwb9b36jIAM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directly+modulated+membrane+lasers+with+108%E2%80%89GHz+bandwidth+on+a+high-thermal-conductivity+silicon+carbide+substrate&rft.jtitle=Nature+photonics&rft.au=Yamaoka%2C+Suguru&rft.au=Diamantopoulos%2C+Nikolaos-Panteleimon&rft.au=Nishi%2C+Hidetaka&rft.au=Nakao%2C+Ryo&rft.date=2021-01-01&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=15&rft.issue=1&rft.spage=28&rft.epage=35&rft_id=info:doi/10.1038%2Fs41566-020-00700-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41566_020_00700_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |