Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate

Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overco...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 15; no. 1; pp. 28 - 35
Main Authors Yamaoka, Suguru, Diamantopoulos, Nikolaos-Panteleimon, Nishi, Hidetaka, Nakao, Ryo, Fujii, Takuro, Takeda, Koji, Hiraki, Tatsurou, Tsurugaya, Takuma, Kanazawa, Shigeru, Tanobe, Hiromasa, Kakitsuka, Takaaki, Tsuchizawa, Tai, Koyama, Fumio, Matsuo, Shinji
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overcomes the modulation bandwidth limit. The laser features a high modulation efficiency because of its large optical confinement in the active region and small differential gain reduction at a high injection current density. We achieve a 42 GHz relaxation oscillation frequency by using a laser with a 50-μm-long active region. The cavity, designed to have a short photon lifetime, suppresses the damping effect while keeping the threshold carrier density low, resulting in a 60 GHz intrinsic 3 dB bandwidth ( f 3dB ). By employing the photon–photon resonance at 95 GHz due to optical feedback from an integrated output waveguide, we achieve an f 3dB of 108 GHz and demonstrate 256 Gbit s −1 four-level pulse-amplitude modulations with a 475 fJ bit −1 energy cost of the direct-current electrical input. Directly modulated membrane distributed reflector lasers are fabricated on a silicon carbide platform. The 3 dB bandwidth, four-level pulse-amplitude modulation speed and operating energy for transmitting one bit are 108 GHz, 256 Gbit s −1 and 475 fJ, respectively.
AbstractList Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overcomes the modulation bandwidth limit. The laser features a high modulation efficiency because of its large optical confinement in the active region and small differential gain reduction at a high injection current density. We achieve a 42 GHz relaxation oscillation frequency by using a laser with a 50-μm-long active region. The cavity, designed to have a short photon lifetime, suppresses the damping effect while keeping the threshold carrier density low, resulting in a 60 GHz intrinsic 3 dB bandwidth (f3dB). By employing the photon–photon resonance at 95 GHz due to optical feedback from an integrated output waveguide, we achieve an f3dB of 108 GHz and demonstrate 256 Gbit s−1 four-level pulse-amplitude modulations with a 475 fJ bit−1 energy cost of the direct-current electrical input.Directly modulated membrane distributed reflector lasers are fabricated on a silicon carbide platform. The 3 dB bandwidth, four-level pulse-amplitude modulation speed and operating energy for transmitting one bit are 108 GHz, 256 Gbit s−1 and 475 fJ, respectively.
Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overcomes the modulation bandwidth limit. The laser features a high modulation efficiency because of its large optical confinement in the active region and small differential gain reduction at a high injection current density. We achieve a 42 GHz relaxation oscillation frequency by using a laser with a 50-μm-long active region. The cavity, designed to have a short photon lifetime, suppresses the damping effect while keeping the threshold carrier density low, resulting in a 60 GHz intrinsic 3 dB bandwidth ( f 3dB ). By employing the photon–photon resonance at 95 GHz due to optical feedback from an integrated output waveguide, we achieve an f 3dB of 108 GHz and demonstrate 256 Gbit s −1 four-level pulse-amplitude modulations with a 475 fJ bit −1 energy cost of the direct-current electrical input. Directly modulated membrane distributed reflector lasers are fabricated on a silicon carbide platform. The 3 dB bandwidth, four-level pulse-amplitude modulation speed and operating energy for transmitting one bit are 108 GHz, 256 Gbit s −1 and 475 fJ, respectively.
Author Nakao, Ryo
Fujii, Takuro
Matsuo, Shinji
Kakitsuka, Takaaki
Yamaoka, Suguru
Diamantopoulos, Nikolaos-Panteleimon
Tanobe, Hiromasa
Tsurugaya, Takuma
Takeda, Koji
Nishi, Hidetaka
Hiraki, Tatsurou
Koyama, Fumio
Tsuchizawa, Tai
Kanazawa, Shigeru
Author_xml – sequence: 1
  givenname: Suguru
  orcidid: 0000-0002-6408-0084
  surname: Yamaoka
  fullname: Yamaoka, Suguru
  email: suguru.yamaoka.hm@hco.ntt.co.jp
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 2
  givenname: Nikolaos-Panteleimon
  orcidid: 0000-0002-4253-3134
  surname: Diamantopoulos
  fullname: Diamantopoulos, Nikolaos-Panteleimon
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 3
  givenname: Hidetaka
  surname: Nishi
  fullname: Nishi, Hidetaka
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 4
  givenname: Ryo
  surname: Nakao
  fullname: Nakao, Ryo
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 5
  givenname: Takuro
  orcidid: 0000-0002-8926-3979
  surname: Fujii
  fullname: Fujii, Takuro
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 6
  givenname: Koji
  surname: Takeda
  fullname: Takeda, Koji
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 7
  givenname: Tatsurou
  surname: Hiraki
  fullname: Hiraki, Tatsurou
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 8
  givenname: Takuma
  surname: Tsurugaya
  fullname: Tsurugaya, Takuma
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 9
  givenname: Shigeru
  surname: Kanazawa
  fullname: Kanazawa, Shigeru
  organization: NTT Device Innovation Center, NTT Corporation
– sequence: 10
  givenname: Hiromasa
  surname: Tanobe
  fullname: Tanobe, Hiromasa
  organization: NTT Device Innovation Center, NTT Corporation
– sequence: 11
  givenname: Takaaki
  surname: Kakitsuka
  fullname: Kakitsuka, Takaaki
  organization: NTT Device Technology Labs, NTT Corporation, Graduate School of Information, Production and Systems, Waseda University
– sequence: 12
  givenname: Tai
  surname: Tsuchizawa
  fullname: Tsuchizawa, Tai
  organization: NTT Device Technology Labs, NTT Corporation
– sequence: 13
  givenname: Fumio
  surname: Koyama
  fullname: Koyama, Fumio
  organization: Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
– sequence: 14
  givenname: Shinji
  surname: Matsuo
  fullname: Matsuo, Shinji
  organization: NTT Device Technology Labs, NTT Corporation
BookMark eNp9kL1uFTEQhS0UJJKQF0hlidphbO-PXaJAEqRINFBbs965uY52vcH2Ei0VLa_Jk2C4CCSKVDM6Ot_M0TlhR3GJxNi5hAsJ2rzOjWy7ToACAdADiO0ZO5Z9Y0VjrD76u5v2BTvJ-R6g1VapY1behkS-TBufl3GdsNDIZ5qHhJH4hJlS5o-h7LkE8-Pb9-ubr3zAOD6GsWpL5Mj34W4vyp7SjJPwSxxXX8KXUDaewxSqwD2mIYzE8zrkkuqLl-z5DqdMZ3_mKft09e7j5Y24_XD9_vLNrfC600XYvjXaD763BBaUNgpItdaT9LKD3dj31uOAXg4NkgItsUNqOgQ0I4G2-pS9Otx9SMvnlXJx98uaYn3pVNNraa3WprrMweXTknOinfOhYAlLrGHD5CS4Xx27Q8eudux-d-y2iqr_0IcUZkzb05A-QLma4x2lf6meoH4CKrmUKg
CitedBy_id crossref_primary_10_1016_j_mne_2024_100258
crossref_primary_10_3390_app11041801
crossref_primary_10_1002_qute_202100062
crossref_primary_10_1016_j_optlastec_2024_112127
crossref_primary_10_3390_photonics8020031
crossref_primary_10_1109_JQE_2023_3342180
crossref_primary_10_1109_JPHOT_2022_3189525
crossref_primary_10_1109_JLT_2022_3153648
crossref_primary_10_1109_JQE_2024_3424421
crossref_primary_10_1364_PRJ_516829
crossref_primary_10_1109_JQE_2024_3506392
crossref_primary_10_1109_JLT_2024_3366532
crossref_primary_10_1063_5_0191813
crossref_primary_10_3788_AOS241000
crossref_primary_10_1007_s10825_023_02060_6
crossref_primary_10_1063_5_0062500
crossref_primary_10_1109_JLT_2023_3237180
crossref_primary_10_1109_JPHOT_2020_3044931
crossref_primary_10_1109_JLT_2022_3203723
crossref_primary_10_1109_LPT_2021_3049859
crossref_primary_10_1021_acsanm_1c02696
crossref_primary_10_1109_LPT_2023_3263970
crossref_primary_10_1103_PhysRevApplied_20_034045
crossref_primary_10_1109_JLT_2022_3213524
crossref_primary_10_3390_opt5020016
crossref_primary_10_1016_j_egyai_2022_100210
crossref_primary_10_1038_s44172_024_00338_6
crossref_primary_10_1364_OE_462051
crossref_primary_10_1364_JOCN_522761
crossref_primary_10_53829_ntr202109fr1
crossref_primary_10_1063_5_0200861
crossref_primary_10_1364_AO_453171
crossref_primary_10_1016_j_optlastec_2021_107830
crossref_primary_10_1109_JPHOT_2022_3160157
crossref_primary_10_1007_s40843_022_2355_6
crossref_primary_10_1587_elex_20_20230594
crossref_primary_10_1109_LPT_2023_3243638
crossref_primary_10_1364_OE_529049
crossref_primary_10_1002_lpor_202401751
crossref_primary_10_1364_OE_469735
crossref_primary_10_1088_1361_6463_ad26cd
crossref_primary_10_1109_JQE_2023_3238748
crossref_primary_10_1109_JQE_2024_3475745
crossref_primary_10_1364_JOCN_499341
crossref_primary_10_1063_5_0230870
crossref_primary_10_53829_ntr202305ra1
crossref_primary_10_1109_JLT_2023_3311716
crossref_primary_10_1109_JQE_2021_3111399
crossref_primary_10_1109_JLT_2023_3239614
crossref_primary_10_1109_JLT_2022_3212473
crossref_primary_10_1109_JLT_2023_3261421
crossref_primary_10_1016_j_optlastec_2025_112601
crossref_primary_10_1038_s41566_020_00739_x
crossref_primary_10_1109_LPT_2022_3233715
crossref_primary_10_35848_1347_4065_ad394d
crossref_primary_10_1587_elex_20_20230057
crossref_primary_10_1109_JLT_2024_3437754
crossref_primary_10_1109_JPHOT_2023_3296203
crossref_primary_10_1364_OE_457436
crossref_primary_10_1364_PRJ_441791
crossref_primary_10_1002_lpor_202300549
crossref_primary_10_1088_2515_7647_adaf63
crossref_primary_10_1364_PRJ_529799
crossref_primary_10_1109_JLT_2022_3172246
crossref_primary_10_1109_JSTQE_2021_3122552
crossref_primary_10_1063_5_0159166
crossref_primary_10_1364_OE_438652
crossref_primary_10_1063_5_0226125
crossref_primary_10_1109_JLT_2023_3240572
crossref_primary_10_1038_s41566_021_00914_8
crossref_primary_10_1088_1361_6528_ac2f5e
crossref_primary_10_1088_1361_6463_acc4d4
crossref_primary_10_1038_s41534_021_00394_2
crossref_primary_10_3788_COL202422_081401
crossref_primary_10_1016_j_porgcoat_2023_108004
crossref_primary_10_1038_s41928_023_01048_1
crossref_primary_10_1109_JLT_2024_3484571
crossref_primary_10_1088_1674_4926_42_4_041306
crossref_primary_10_1088_1674_4926_44_11_112301
crossref_primary_10_1109_JSTQE_2024_3474797
crossref_primary_10_1021_acs_cgd_3c00633
crossref_primary_10_1364_OL_457568
crossref_primary_10_1038_s42005_024_01620_x
crossref_primary_10_1364_OE_526165
crossref_primary_10_1364_OE_468192
crossref_primary_10_5104_jiep_26_241
crossref_primary_10_3390_photonics10121298
crossref_primary_10_1002_adfm_202405559
crossref_primary_10_1016_j_icheatmasstransfer_2022_106478
crossref_primary_10_3788_CJL241173
crossref_primary_10_1364_OE_486707
crossref_primary_10_1063_5_0048712
crossref_primary_10_1088_1402_4896_ace93b
crossref_primary_10_1109_JPHOT_2023_3343372
crossref_primary_10_1109_JLT_2023_3242371
crossref_primary_10_53829_ntr202103sr2
crossref_primary_10_1364_JOSAB_438329
crossref_primary_10_5104_jiep_26_590
crossref_primary_10_1587_elex_18_20210239
crossref_primary_10_1364_OL_510237
crossref_primary_10_3390_photonics8040130
crossref_primary_10_1364_AO_494901
crossref_primary_10_3788_AOS240976
crossref_primary_10_1016_j_optlastec_2024_111821
crossref_primary_10_1364_OE_462626
crossref_primary_10_1364_OPTICA_489894
crossref_primary_10_1109_JSTQE_2022_3181939
crossref_primary_10_3390_app11094284
crossref_primary_10_1587_elex_21_20240391
crossref_primary_10_1038_s41377_021_00697_1
crossref_primary_10_1364_OL_486089
crossref_primary_10_1109_JLT_2023_3301044
crossref_primary_10_1364_OE_418952
crossref_primary_10_1109_JLT_2023_3265084
crossref_primary_10_1109_JSTQE_2021_3126124
crossref_primary_10_3390_app112311096
Cites_doi 10.1109/68.300164
10.1109/JLT.2016.2639542
10.1049/el:19921384
10.1364/OL.44.000009
10.1109/JLT.2019.2894173
10.1109/JLT.2019.2897480
10.1109/LPT.2011.2179530
10.1109/JLT.2016.2542579
10.1063/1.96810
10.1109/3.720235
10.1109/JPHOT.2015.2477511
10.1109/JLT.2017.2743211
10.1109/LPT.2007.903530
10.1063/1.4868576
10.1364/AOP.10.000567
10.1109/LPT.2014.2384520
10.1109/JSTQE.2017.2708606
10.1109/JLT.2016.2600591
10.1109/JLT.2003.822157
10.1109/JLT.2017.2650678
10.1109/68.53244
10.1049/el:19970335
10.1109/JLT.2018.2890118
10.1109/3.199289
10.1364/OE.24.018346
10.1049/el:20031018
10.7567/APEX.7.022102
10.1109/JSTQE.2009.2015194
10.1109/JLT.2017.2651947
10.1109/JSTQE.2013.2238509
10.1109/JLT.2016.2632164
10.1109/JLT.2018.2876732
10.1049/el.2014.0797
10.1109/ISLC.2010.5642646
10.1002/9781118148167
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
7QO
7SP
7U5
8FD
8FE
8FG
8FH
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
L7M
LK8
M7P
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1038/s41566-020-00700-y
DatabaseName CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1749-4893
EndPage 35
ExternalDocumentID 10_1038_s41566_020_00700_y
GroupedDBID -~X
0R~
123
29M
39C
4.4
5BI
5M7
5S5
70F
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABZEH
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
CS3
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
I-F
LK8
M7P
NNMJJ
O9-
ODYON
P2P
P62
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7QO
7SP
7U5
8FD
AZQEC
DWQXO
FR3
GNUQQ
H8D
L7M
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c363t-97583cbc79e09023820e259ce1c160fd779cabac1b4ae2031a6ae46a0a8de0393
IEDL.DBID BENPR
ISSN 1749-4885
IngestDate Tue Aug 12 07:26:44 EDT 2025
Tue Jul 01 03:06:59 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Fri Feb 21 02:41:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-97583cbc79e09023820e259ce1c160fd779cabac1b4ae2031a6ae46a0a8de0393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8926-3979
0000-0002-6408-0084
0000-0002-4253-3134
PQID 2473199338
PQPubID 546300
PageCount 8
ParticipantIDs proquest_journals_2473199338
crossref_citationtrail_10_1038_s41566_020_00700_y
crossref_primary_10_1038_s41566_020_00700_y
springer_journals_10_1038_s41566_020_00700_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature photonics
PublicationTitleAbbrev Nat. Photonics
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Uomi, Sasaki, Tsuchiya, Nakano, Chinone (CR3) 1990; 2
Diamantopoulos (CR39) 2019; 44
Kobayashi (CR12) 2013; 19
Baeuerle (CR20) 2019; 37
Tucker, Wiesenfeld, Downey, Bowers (CR23) 1986; 48
Kreissl (CR28) 2012; 24
Matsui (CR14) 2016; 34
Lange (CR19) 2017; 36
Matsui, Murai, Arahira, Ogawa, Suzuki (CR7) 1998; 34
Kjebon (CR25) 1997; 33
CR38
CR37
Nishi (CR41) 2015; 7
Chen (CR1) 2016; 34
Xu (CR34) 2014; 115
CR11
Dalir, Koyama (CR29) 2014; 7
CR33
Nakahara (CR35) 2014; 50
Estaran (CR18) 2019; 37
Diamantopoulos (CR36) 2019; 37
Nishi (CR15) 2016; 24
Abbasi (CR30) 2017; 23
Nakahara (CR8) 2004; 22
Kito, Otsuka, Ishino, Fujihara, Matsui (CR6) 1994; 6
Kanazawa (CR16) 2017; 35
Nakahara (CR13) 2015; 27
Nakahara (CR9) 2007; 19
Ozolins (CR17) 2017; 35
CR27
CR22
Matsui (CR31) 2017; 35
Matsuo, Kakitsuka (CR32) 2018; 10
CR43
CR42
Bach (CR26) 2003; 39
CR40
Sasada (CR2) 2019; 37
Morton (CR4) 1992; 28
Uomi, Aoki, Tsuchiya, Takai (CR5) 1993; 29
Kuchta (CR24) 2015; 27
Otsubo (CR10) 2009; 15
Ogiso (CR21) 2017; 35
K Uomi (700_CR3) 1990; 2
S Kanazawa (700_CR16) 2017; 35
JM Estaran (700_CR18) 2019; 37
K Nakahara (700_CR9) 2007; 19
K Otsubo (700_CR10) 2009; 15
H Nishi (700_CR15) 2016; 24
Y Ogiso (700_CR21) 2017; 35
K Uomi (700_CR5) 1993; 29
RS Tucker (700_CR23) 1986; 48
M Kito (700_CR6) 1994; 6
NP Diamantopoulos (700_CR39) 2019; 44
NP Diamantopoulos (700_CR36) 2019; 37
Y Matsui (700_CR7) 1998; 34
DM Kuchta (700_CR24) 2015; 27
S Matsuo (700_CR32) 2018; 10
700_CR38
H Nishi (700_CR41) 2015; 7
K Nakahara (700_CR35) 2014; 50
700_CR37
B Baeuerle (700_CR20) 2019; 37
A Abbasi (700_CR30) 2017; 23
700_CR11
700_CR33
W Kobayashi (700_CR12) 2013; 19
S Lange (700_CR19) 2017; 36
PA Morton (700_CR4) 1992; 28
H Dalir (700_CR29) 2014; 7
O Kjebon (700_CR25) 1997; 33
K Nakahara (700_CR13) 2015; 27
Y Matsui (700_CR31) 2017; 35
Ozolins (700_CR17) 2017; 35
J Chen (700_CR1) 2016; 34
700_CR27
Y Matsui (700_CR14) 2016; 34
L Bach (700_CR26) 2003; 39
700_CR43
700_CR22
N Sasada (700_CR2) 2019; 37
700_CR42
700_CR40
K Nakahara (700_CR8) 2004; 22
J Kreissl (700_CR28) 2012; 24
C Xu (700_CR34) 2014; 115
References_xml – volume: 6
  start-page: 690
  year: 1994
  end-page: 693
  ident: CR6
  article-title: Enhanced relaxation oscillation frequency of 1.3 μm strained-layer multiquantum well lasers
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/68.300164
– ident: CR22
– volume: 35
  start-page: 1450
  year: 2017
  end-page: 1455
  ident: CR21
  article-title: Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2639542
– volume: 27
  start-page: 577
  year: 2015
  end-page: 580
  ident: CR24
  article-title: A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link
  publication-title: J. Lightwave Technol.
– ident: CR43
– volume: 28
  start-page: 2156
  year: 1992
  end-page: 2157
  ident: CR4
  article-title: 25 GHz bandwidth 1.55 μm GaInAsP p-doped strained multiquantum-well lasers
  publication-title: Electron. Lett.
  doi: 10.1049/el:19921384
– volume: 44
  start-page: 9
  year: 2019
  end-page: 12
  ident: CR39
  article-title: Amplifierless PAM-4/PAM-8 transmissions in O-band using a directly modulated laser for optical data-center interconnects
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000009
– volume: 37
  start-page: 1686
  year: 2019
  end-page: 1689
  ident: CR2
  article-title: Wide-temperature-range (25 °C to 80 °C) 53-GBaud PAM4 (106-Gb/s) operation of 1.3-μm directly modulated DFB lasers for 10-km transmission
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2894173
– volume: 37
  start-page: 2050
  year: 2019
  end-page: 2057
  ident: CR20
  article-title: Reduced equalization needs of 100 GHz bandwidth plasmonic modulators
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2897480
– ident: CR37
– volume: 24
  start-page: 362
  year: 2012
  end-page: 364
  ident: CR28
  article-title: Up to 40-Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL)
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2011.2179530
– volume: 34
  start-page: 2677
  year: 2016
  end-page: 2683
  ident: CR14
  article-title: 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB laser
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2542579
– volume: 48
  start-page: 1707
  year: 1986
  end-page: 1709
  ident: CR23
  article-title: Propagation delays and transition times in pulse-modulated semiconductor lasers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.96810
– ident: CR33
– volume: 34
  start-page: 1970
  year: 1998
  end-page: 1978
  ident: CR7
  article-title: Enhanced modulation bandwidth for strain-compensated InGaAlAs–InGaAsP MQW lasers
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.720235
– volume: 7
  start-page: 4900308
  year: 2015
  ident: CR41
  article-title: Monolithic integration of InP wire and SiO waveguides on Si platform
  publication-title: IEEE Photon. J.
  doi: 10.1109/JPHOT.2015.2477511
– volume: 36
  start-page: 97
  year: 2017
  end-page: 102
  ident: CR19
  article-title: 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2743211
– ident: CR40
– volume: 19
  start-page: 1436
  year: 2007
  end-page: 1438
  ident: CR9
  article-title: 40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2007.903530
– ident: CR27
– ident: CR42
– volume: 115
  start-page: 113501
  year: 2014
  ident: CR34
  article-title: Temperature dependence of refractive indices for 4H- and 6H-SiC
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4868576
– volume: 10
  start-page: 567
  year: 2018
  end-page: 643
  ident: CR32
  article-title: Low-operating-energy directly modulated lasers for short-distance optical interconnects
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.10.000567
– volume: 27
  start-page: 534
  year: 2015
  end-page: 536
  ident: CR13
  article-title: Direct modulation at 56 and 50 Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers
  publication-title: IEEE Photon.Technol. Lett.
  doi: 10.1109/LPT.2014.2384520
– volume: 23
  start-page: 1501307
  year: 2017
  ident: CR30
  article-title: Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2017.2708606
– volume: 34
  start-page: 4954
  year: 2016
  end-page: 4964
  ident: CR1
  article-title: An energy efficient 56 Gbps PAM-4 VCSEL transmitter enabled by a 100 Gbps driver in 0.25 μm InP DHBT technology
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2600591
– ident: CR38
– volume: 22
  start-page: 159
  year: 2004
  end-page: 165
  ident: CR8
  article-title: 12.5-Gb/s direct modulation up to 115 °C in 1.3-μm InGaAlAs-MQW RWG DFB lasers with notch-free grating structure
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.822157
– volume: 35
  start-page: 397
  year: 2017
  end-page: 403
  ident: CR31
  article-title: 55 GHz bandwidth distributed reflector laser
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2650678
– volume: 2
  start-page: 229
  year: 1990
  end-page: 230
  ident: CR3
  article-title: Ultralow chirp and high-speed 1.55 μm multiquantum well /4-shifted DFB lasers
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/68.53244
– ident: CR11
– volume: 33
  start-page: 488
  year: 1997
  end-page: 489
  ident: CR25
  article-title: 30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength
  publication-title: Electron. Lett.
  doi: 10.1049/el:19970335
– volume: 37
  start-page: 1214
  year: 2019
  end-page: 1224
  ident: CR36
  article-title: On the complexity reduction of the second-order Volterra nonlinear equalizer for IM/DD systems
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2890118
– volume: 29
  start-page: 355
  year: 1993
  end-page: 360
  ident: CR5
  article-title: Dependence of high-speed properties on the number of quantum wells in 1.55 μm InGaAs-InGaAsP MQW /4-shifted DFB lasers
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.199289
– volume: 24
  start-page: 18346
  year: 2016
  end-page: 18352
  ident: CR15
  article-title: Membrane distributed-reflector laser integrated with SiO -based spot-size converter on Si substrate
  publication-title: Opt. Express
  doi: 10.1364/OE.24.018346
– volume: 39
  start-page: 1592
  year: 2003
  end-page: 1593
  ident: CR26
  article-title: Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design
  publication-title: Electron. Lett.
  doi: 10.1049/el:20031018
– volume: 7
  start-page: 022102
  year: 2014
  ident: CR29
  article-title: High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.7.022102
– volume: 15
  start-page: 687
  year: 2009
  end-page: 693
  ident: CR10
  article-title: 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2009.2015194
– volume: 35
  start-page: 1174
  year: 2017
  end-page: 1179
  ident: CR17
  article-title: 100 GHz externally modulated laser for optical interconnects
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2651947
– volume: 19
  start-page: 1500908
  year: 2013
  ident: CR12
  article-title: 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-Based DFB laser with a ridge waveguide structure
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2013.2238509
– volume: 35
  start-page: 418
  year: 2017
  end-page: 422
  ident: CR16
  article-title: 214-Gb/s 4-PAM operation of flip-chip interconnection EADFB laser module
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2632164
– volume: 37
  start-page: 178
  year: 2019
  end-page: 187
  ident: CR18
  article-title: 140/180/204-GBaud OOK transceiver for inter- and intra-data center connectivity
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2876732
– volume: 50
  start-page: 947
  year: 2014
  end-page: 948
  ident: CR35
  article-title: 1.3 μm InGaAlAs asymmetric corrugationpitch-modulated DFB lasers with high mask margin at 28 Gbit/s
  publication-title: Electron. Lett.
  doi: 10.1049/el.2014.0797
– volume: 23
  start-page: 1501307
  year: 2017
  ident: 700_CR30
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2017.2708606
– volume: 6
  start-page: 690
  year: 1994
  ident: 700_CR6
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/68.300164
– volume: 115
  start-page: 113501
  year: 2014
  ident: 700_CR34
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4868576
– volume: 7
  start-page: 022102
  year: 2014
  ident: 700_CR29
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.7.022102
– volume: 36
  start-page: 97
  year: 2017
  ident: 700_CR19
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2743211
– volume: 33
  start-page: 488
  year: 1997
  ident: 700_CR25
  publication-title: Electron. Lett.
  doi: 10.1049/el:19970335
– volume: 15
  start-page: 687
  year: 2009
  ident: 700_CR10
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2009.2015194
– volume: 35
  start-page: 1450
  year: 2017
  ident: 700_CR21
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2639542
– volume: 24
  start-page: 18346
  year: 2016
  ident: 700_CR15
  publication-title: Opt. Express
  doi: 10.1364/OE.24.018346
– volume: 10
  start-page: 567
  year: 2018
  ident: 700_CR32
  publication-title: Adv. Opt. Photon.
  doi: 10.1364/AOP.10.000567
– volume: 37
  start-page: 1214
  year: 2019
  ident: 700_CR36
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2890118
– ident: 700_CR11
  doi: 10.1109/ISLC.2010.5642646
– ident: 700_CR43
– volume: 19
  start-page: 1500908
  year: 2013
  ident: 700_CR12
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2013.2238509
– volume: 27
  start-page: 577
  year: 2015
  ident: 700_CR24
  publication-title: J. Lightwave Technol.
– volume: 27
  start-page: 534
  year: 2015
  ident: 700_CR13
  publication-title: IEEE Photon.Technol. Lett.
  doi: 10.1109/LPT.2014.2384520
– ident: 700_CR33
– volume: 48
  start-page: 1707
  year: 1986
  ident: 700_CR23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.96810
– volume: 35
  start-page: 1174
  year: 2017
  ident: 700_CR17
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2651947
– ident: 700_CR37
– volume: 37
  start-page: 1686
  year: 2019
  ident: 700_CR2
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2894173
– volume: 19
  start-page: 1436
  year: 2007
  ident: 700_CR9
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2007.903530
– ident: 700_CR42
– volume: 37
  start-page: 178
  year: 2019
  ident: 700_CR18
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2876732
– ident: 700_CR40
– volume: 34
  start-page: 2677
  year: 2016
  ident: 700_CR14
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2542579
– volume: 44
  start-page: 9
  year: 2019
  ident: 700_CR39
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.000009
– volume: 22
  start-page: 159
  year: 2004
  ident: 700_CR8
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.822157
– ident: 700_CR22
  doi: 10.1002/9781118148167
– volume: 2
  start-page: 229
  year: 1990
  ident: 700_CR3
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/68.53244
– volume: 39
  start-page: 1592
  year: 2003
  ident: 700_CR26
  publication-title: Electron. Lett.
  doi: 10.1049/el:20031018
– volume: 34
  start-page: 4954
  year: 2016
  ident: 700_CR1
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2600591
– volume: 29
  start-page: 355
  year: 1993
  ident: 700_CR5
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.199289
– volume: 35
  start-page: 397
  year: 2017
  ident: 700_CR31
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2650678
– volume: 34
  start-page: 1970
  year: 1998
  ident: 700_CR7
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.720235
– ident: 700_CR27
– volume: 37
  start-page: 2050
  year: 2019
  ident: 700_CR20
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2897480
– volume: 28
  start-page: 2156
  year: 1992
  ident: 700_CR4
  publication-title: Electron. Lett.
  doi: 10.1049/el:19921384
– volume: 24
  start-page: 362
  year: 2012
  ident: 700_CR28
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2011.2179530
– volume: 50
  start-page: 947
  year: 2014
  ident: 700_CR35
  publication-title: Electron. Lett.
  doi: 10.1049/el.2014.0797
– volume: 35
  start-page: 418
  year: 2017
  ident: 700_CR16
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2632164
– ident: 700_CR38
– volume: 7
  start-page: 4900308
  year: 2015
  ident: 700_CR41
  publication-title: IEEE Photon. J.
  doi: 10.1109/JPHOT.2015.2477511
SSID ssj0053922
Score 2.6541421
Snippet Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28
SubjectTerms 140/125
142/126
639/624/1020/1085
639/624/1020/1093
639/624/1020/1095
Active regions (lasers)
Applied and Technical Physics
Bandwidths
Carrier density
Conductivity
Damping
Electrical resistivity
Energy costs
Injection current
Laser applications
Lasers
Membranes
Optical feedback
Photons
Physics
Physics and Astronomy
Pulse amplitude modulation
Quantum Physics
Relaxation oscillations
Semiconductor lasers
Silicon
Silicon carbide
Silicon substrates
Waveguides
Title Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate
URI https://link.springer.com/article/10.1038/s41566-020-00700-y
https://www.proquest.com/docview/2473199338
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH_a2gsXGGyIslH5wA2sJXYSOye0TusqJKoJMWm3yF-RKrXpWIqm7rQr_yZ_Cc-OQwUSu8aJD3lfv_cN8L42winnGK1zYWiWWkl1USdU12j_am8wQ8b0y7yYXWefb_KbGHBrY1llrxODorZr42PkpywT3Bebcfnp9jv1W6N8djWu0NiHIapgKQcwnFzMr772ujhH68-6lsiSIqvmsW0m4fK0Da4L9e6Tn3mT0O3fpmmHN_9JkQbLMz2A5xEykrOOxi9hzzWv4EWEjyQKZ3sIm059LbdktbZ-KxeertwK3eHGEQTJCPSID7uSNJG_Hn9ezh6IVo29X1h8tm6IIn52MfWIcKWWFB1lPws2LJcg7WKJLNMQo-70wjrSor4Jc22P4Hp68e18RuNSBWp4wTe0RAeBG21E6XxJJkcE4NAFMi41aZHUVojSKK1MqjPlGIq8KpTLCpUoaZ1v5H0Ng2bduDdACscsEyznQtmMpU5JXiO6KDW3SuSFGEHa_8_KxInjfvHFsgqZby6rjgYV0qAKNKi2I_jw55vbbt7Gk2-f9GSqouy11Y5TRvCxJ93u-P-3vX36tmN4xnxBS4i_nMBgc_fDvUNEstFj2JfTyzEMz6aTyXwcmfA35yrhRg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN2JpAR_gBFYTO4mTA0II2G7p49RKvRk_JtJKu9nSbFUtJ678GX4Uv4QZJ2EFEr31Gic-ZD7PfON5Mfay9hosgBR1rr3I0lAKV9SJcDXav5oMZoyYHh4Vk5Ps82l-usF-DrUwlFY56MSoqMPC0x35jsy0omQzVb47-ypoahRFV4cRGh0s9mF1iS5b-3bvI8r3lZTjT8cfJqKfKiC8KtRSVMiQlXdeV0A5iQpNIKAP4CH1aZHUQevKW2d96jILEjFvCwtZYRNbBqBKVtz3BruZKbTkVJk-3h00f45cQ3YFmJXAg5H3RTqJKnfa6CgJctaow04iVn8bwjW7_ScgG-3c-B670xNU_r5D1H22Ac0Ddrcnq7xXBe1DtuyU5WzF54tAM8BwdQ5zdL4b4EjJkVZyuuTlaVL--v5jd_KNO9uEy2nAZ4uGW06dkgXxz7mdCXTLqfNsHGXB2-kMAdpwb8_dNABvUbvFLrqP2Mm1_OzHbLNZNPCE8QJkkFrmStuQyRRsqWrkMpVTweq80COWDv_T-L6_OY3ZmJkYZ1el6WRgUAYmysCsRuz1n2_Ouu4eV769PYjJ9Ce9NWtcjtibQXTr5f_v9vTq3V6wW5PjwwNzsHe0v8VuS0qliTc_22xzeX4Bz5ALLd3zCEDOvlw34n8DovkacQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYS48I-6UMAHOIHVxE7i5IAqoF22FFYVolJvxn-RVtrNlmZRtZy48kp9HJ6EseOwAoneeo0TS_F8nvnGM54BeFYb4ZRzjNa5MDRLbUl1USdU12j_am8wQ8T046QYH2fvT_KTDbjo78L4tMpeJwZFbRfGn5HvsExwn2zGy506pkUc7Y12T79S30HKR1r7dhodRA7d6hzdt_bVwR7K-jljo_3Pb8c0dhighhd8SStky9xoIyrn8xM5mkOH_oBxqUmLpLZCVEZpZVKdKccQ_6pQLitUokrr_K1WnPcabArvFQ1g883-5OhTbwdyZB6su45ZUdwmebyyk-AftMFtot518_V2Err62yyuue4_4dlg9Ua34Wakq-R1h687sOGau3ArUlcSFUN7D5ad6pytyHxhfUcwHJ27ObrijSNI0JFkEn_kS9Kk_PXj57vxd6JVY8-nFp8tGqKIr5tMPRudqxlFJ93XoQ2NLUg7nSFcG2LUmZ5aR1rUdaGm7n04vpLlfgCDZtG4LSCFY5YJlnOhbMZSp0peI7OpNLdK5IUYQtqvpzSx2rlvujGTIerOS9nJQKIMZJCBXA3hxZ9vTrtaH5e-vd2LScZ938o1Sofwshfdevj_sz28fLancB3RLj8cTA4fwQ3m82rCMdA2DJZn39xjJEZL_SQikMCXqwb9b36jIAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Directly+modulated+membrane+lasers+with+108%E2%80%89GHz+bandwidth+on+a+high-thermal-conductivity+silicon+carbide+substrate&rft.jtitle=Nature+photonics&rft.au=Yamaoka%2C+Suguru&rft.au=Diamantopoulos%2C+Nikolaos-Panteleimon&rft.au=Nishi%2C+Hidetaka&rft.au=Nakao%2C+Ryo&rft.date=2021-01-01&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=15&rft.issue=1&rft.spage=28&rft.epage=35&rft_id=info:doi/10.1038%2Fs41566-020-00700-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41566_020_00700_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon