Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate
Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overco...
Saved in:
Published in | Nature photonics Vol. 15; no. 1; pp. 28 - 35 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Increasing the modulation speed of semiconductor lasers has attracted much attention from the viewpoint of both physics and the applications of lasers. Here we propose a membrane distributed reflector laser on a low-refractive-index and high-thermal-conductivity silicon carbide substrate that overcomes the modulation bandwidth limit. The laser features a high modulation efficiency because of its large optical confinement in the active region and small differential gain reduction at a high injection current density. We achieve a 42 GHz relaxation oscillation frequency by using a laser with a 50-μm-long active region. The cavity, designed to have a short photon lifetime, suppresses the damping effect while keeping the threshold carrier density low, resulting in a 60 GHz intrinsic 3 dB bandwidth (
f
3dB
). By employing the photon–photon resonance at 95 GHz due to optical feedback from an integrated output waveguide, we achieve an
f
3dB
of 108 GHz and demonstrate 256 Gbit s
−1
four-level pulse-amplitude modulations with a 475 fJ bit
−1
energy cost of the direct-current electrical input.
Directly modulated membrane distributed reflector lasers are fabricated on a silicon carbide platform. The 3 dB bandwidth, four-level pulse-amplitude modulation speed and operating energy for transmitting one bit are 108 GHz, 256 Gbit s
−1
and 475 fJ, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-020-00700-y |