On the replacement of traditional stabilizers by guaiacol in environmentally safe nitrocellulose-based propellants

In this work we investigated the possibility of substituting diphenylamine (DPA) by the natural product 2-methoxy phenol, known as guaiacol (CAS 90-05-1), as a stabilizer for nitrocellulose (NC)-based propellants. Stability evaluation, using heat flow calorimetry, revealed lower heat flows associate...

Full description

Saved in:
Bibliographic Details
Published inClean technologies and environmental policy Vol. 24; no. 6; pp. 1837 - 1849
Main Authors Rodrigues, Rodrigo L. B., da Silva, Ana Paula, Rosato, Rogério, Lemos, Maurício F., Peixoto, Fernando C., França, Tanos C. C., Filho, Letivan G. Mendonça
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work we investigated the possibility of substituting diphenylamine (DPA) by the natural product 2-methoxy phenol, known as guaiacol (CAS 90-05-1), as a stabilizer for nitrocellulose (NC)-based propellants. Stability evaluation, using heat flow calorimetry, revealed lower heat flows associated with our guaiacol-stabilized propellant samples when compared to those of propellants stabilized with the traditional stabilizers. Also, pressure vacuum stability tests showed that our propellant exhibited lower evolved gas volumes. Traditional tests, such as the German Test, and the Bergmann-Junk Test, scored a NO volume, after titration, of 0.87 ml (below the limit-value for acceptance, which is 2.0 ml), and the Storage Test, showed that our samples are stable and do not degrade until 3 days when submitted to a constant temperature of 100 °C. The homogeneity, stability and compatibility of our samples were evaluated through scanning electron microscopy, differential scanning calorimetry, and isothermal thermogravimetry. Ballistic parameters were estimated using a closed vessel along with computational codes developed by our research group, for comparison purposes. Finally, the high-performance liquid chromatography method allowed inferring the stabilizer consumption after artificial ageing of samples. This method also showed that the material met the corresponding stability criteria of AOP-48. Concluding, our results clearly indicate that guaiacol is an effective and efficient substitute for DPA as a propellant stabilizer for single-base NC-based propellants, making them more environmentally friendly. Graphical abstract
ISSN:1618-954X
1618-9558
DOI:10.1007/s10098-022-02291-4