Performance of GFRP-RC precast cap beam to column connections with epoxy-anchored reinforcement: a numerical study

In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against...

Full description

Saved in:
Bibliographic Details
Published inArchives of Civil and Mechanical Engineering Vol. 24; no. 2; p. 131
Main Authors El-Naqeeb, Mohamed H., Hassanli, Reza, Zhuge, Yan, Ma, Xing, Bazli, Milad, Manalo, Allan
Format Journal Article
LanguageEnglish
Published London Springer London 23.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2083-3318
1644-9665
2083-3318
DOI10.1007/s43452-024-00946-1

Cover

Abstract In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against three experimental results with different anchored GFRP reinforcement considering the effect of reinforcement slippage. Different interaction models for slippage simulation were evaluated and discussed. The validated model was then utilized to investigate the effect of anchored length, bar diameters, anchored reinforcement amount, and the geometry of the connection. The results indicate that an optimum anchored length, equal to 25 times the bar's diameter, should be provided. It was also found that the precast beam-to-column element connection should be designed for a moment capacity at least 25% higher than that of the column section. Moreover, a minimum beam width, depth and beam overhanging length of 1.75, 1.6 and 0.25 times the column width respectively were recommended to be considered in design. The results from this study can provide direct guidelines for the design of precast GFRP-RC cap beam to the column connection with epoxy anchored reinforcement, especially in applications where precast elements need to be erected quickly, a novel method that can accelerate the construction of jetties and bridges.
AbstractList In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against three experimental results with different anchored GFRP reinforcement considering the effect of reinforcement slippage. Different interaction models for slippage simulation were evaluated and discussed. The validated model was then utilized to investigate the effect of anchored length, bar diameters, anchored reinforcement amount, and the geometry of the connection. The results indicate that an optimum anchored length, equal to 25 times the bar's diameter, should be provided. It was also found that the precast beam-to-column element connection should be designed for a moment capacity at least 25% higher than that of the column section. Moreover, a minimum beam width, depth and beam overhanging length of 1.75, 1.6 and 0.25 times the column width respectively were recommended to be considered in design. The results from this study can provide direct guidelines for the design of precast GFRP-RC cap beam to the column connection with epoxy anchored reinforcement, especially in applications where precast elements need to be erected quickly, a novel method that can accelerate the construction of jetties and bridges.
In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against three experimental results with different anchored GFRP reinforcement considering the effect of reinforcement slippage. Different interaction models for slippage simulation were evaluated and discussed. The validated model was then utilized to investigate the effect of anchored length, bar diameters, anchored reinforcement amount, and the geometry of the connection. The results indicate that an optimum anchored length, equal to 25 times the bar's diameter, should be provided. It was also found that the precast beam-to-column element connection should be designed for a moment capacity at least 25% higher than that of the column section. Moreover, a minimum beam width, depth and beam overhanging length of 1.75, 1.6 and 0.25 times the column width respectively were recommended to be considered in design. The results from this study can provide direct guidelines for the design of precast GFRP-RC cap beam to the column connection with epoxy anchored reinforcement, especially in applications where precast elements need to be erected quickly, a novel method that can accelerate the construction of jetties and bridges.
ArticleNumber 131
Author Zhuge, Yan
Ma, Xing
El-Naqeeb, Mohamed H.
Bazli, Milad
Hassanli, Reza
Manalo, Allan
Author_xml – sequence: 1
  givenname: Mohamed H.
  orcidid: 0000-0002-0573-2978
  surname: El-Naqeeb
  fullname: El-Naqeeb, Mohamed H.
  organization: UniSA STEM, University of South Australia, School of Engineering and Technology, Badr University in Cairo
– sequence: 2
  givenname: Reza
  orcidid: 0000-0001-5855-6405
  surname: Hassanli
  fullname: Hassanli, Reza
  email: reza.hassanli@unisa.edu.au
  organization: UniSA STEM, University of South Australia
– sequence: 3
  givenname: Yan
  orcidid: 0000-0003-1620-6743
  surname: Zhuge
  fullname: Zhuge, Yan
  organization: UniSA STEM, University of South Australia
– sequence: 4
  givenname: Xing
  orcidid: 0000-0001-5488-5252
  surname: Ma
  fullname: Ma, Xing
  organization: UniSA STEM, University of South Australia
– sequence: 5
  givenname: Milad
  orcidid: 0000-0001-9027-6155
  surname: Bazli
  fullname: Bazli, Milad
  organization: Faculty of Science and Technology, Charles Darwin University
– sequence: 6
  givenname: Allan
  orcidid: 0000-0003-0493-433X
  surname: Manalo
  fullname: Manalo, Allan
  organization: Center for Future Materials, School of Engineering, University of Southern Queensland
BookMark eNp9kE9LxDAQxYMo-PcLeAp4jk6atE29yaKrICii55Bmp1rZJjVJ0f32Zl1B8eBp5vB-7828fbLtvENCjjmccoD6LEohy4JBIRlAIyvGt8heAUowIbja_rXvkqMYXwGAQ13wqtwj4R5D58NgnEXqOzq_erhnDzM6BrQmJmrNSFs0A02eWr-cBpeHc2hT712k7316oTj6jxXLDi8-4IIG7F22tDigS-fUUDcNGHprljSmabE6JDudWUY8-p4H5Onq8nF2zW7v5jezi1tmRSUSU0pVjTWyaSxWtpDd-mhoVFfmR8FUUomuhqqt64VRbWPKtijbNusBC255Kw7IycZ3DP5twpj0q5-Cy5FagFSVaABkVhUblQ0-xoCdHkM_mLDSHPS6Xr2pV-dU_VWv5hlSfyDbJ7OuJAXTL_9HxQaNOcc9Y_i56h_qE1QTkOI
CitedBy_id crossref_primary_10_1016_j_istruc_2024_107798
crossref_primary_10_1016_j_engstruct_2025_119732
crossref_primary_10_1016_j_engstruct_2024_119184
crossref_primary_10_1016_j_istruc_2024_108109
Cites_doi 10.17226/25803
10.1007/s10518-021-01133-w
10.1201/9780367814885
10.1016/j.conbuildmat.2017.07.092
10.1016/j.istruc.2021.08.009
10.1080/13632469.2020.1785356
10.3390/buildings10060099
10.1016/j.istruc.2022.08.034
10.1016/j.compstruct.2016.01.014
10.1016/j.jobe.2022.104013
10.1016/j.engstruct.2022.115514
10.1680/macr.11.00120
10.1016/j.engstruct.2017.12.035
10.1061/JCCOF2.CCENG-3863
10.1016/j.istruc.2020.12.091
10.1016/j.engstruct.2017.05.034
10.1007/s10518-022-01475-z
10.1016/j.compstruct.2018.03.027
10.3390/buildings13020493
10.1016/j.engstruct.2017.05.069
10.1016/j.engstruct.2023.115755
10.1016/j.engstruct.2024.117489
10.1016/j.engstruct.2019.04.091
10.1061/(ASCE)ST.1943-541X.0001972
10.1061/JSENDH.STENG-11950
10.1016/j.istruc.2023.02.122
10.1061/(ASCE)CC.1943-5614.0000685
10.1016/j.compstruct.2021.114540
10.1016/j.istruc.2018.04.001
10.1007/s11043-016-9336-6
10.1016/j.engstruct.2019.02.018
10.1016/j.istruc.2024.106003
10.1016/j.jobe.2022.104033
10.1061/(ASCE)CC.1943-5614.0000220
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s43452-024-00946-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Engineering Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2083-3318
ExternalDocumentID 10_1007_s43452_024_00946_1
GrantInformation_xml – fundername: University of South Australia
GroupedDBID --M
.~1
0R~
1~.
23M
2JY
4.4
406
457
4G.
5GY
7-5
8P~
AACDK
AACTN
AAEDT
AAEPC
AAHNG
AAIKJ
AAJBT
AALRI
AAOAW
AASML
AATNV
AAUYE
ABAKF
ABECU
ABJNI
ABMQK
ABTEG
ABTKH
ABTMW
ABXRA
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACPIV
ACZOJ
ADBBV
ADEZE
ADTZH
AECPX
AEFQL
AEKER
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AFTJW
AGHFR
AGMZJ
AGQEE
AGUBO
AGYEJ
AIGIU
AILAN
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMXSW
AMYLF
BLXMC
C6C
DPUIP
EBLON
EBS
ESX
FDB
FEDTE
FIGPU
FIRID
FNPLU
GBLVA
HVGLF
IKXTQ
IWAJR
JJJVA
LLZTM
MAGPM
MO0
NPVJJ
NQJWS
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
PT4
Q38
ROL
RSV
SDF
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
T5K
Y2W
~G-
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ACSTC
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
JZLTJ
M7S
PHGZM
PHGZT
PTHSS
8FE
8FG
ABRTQ
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-88869ca499ce6c24f0107098f50240a6483f706b77da8b9a5b25bba490e21c1b3
IEDL.DBID BENPR
ISSN 2083-3318
1644-9665
IngestDate Fri Jul 25 11:45:39 EDT 2025
Tue Jul 01 04:16:42 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
Fri Feb 21 02:40:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bond simulation
Precast duct connection
Finite element modelling
Anchored reinforcement
Epoxy
Cap beam
GFRP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-88869ca499ce6c24f0107098f50240a6483f706b77da8b9a5b25bba490e21c1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9027-6155
0000-0001-5488-5252
0000-0002-0573-2978
0000-0003-0493-433X
0000-0003-1620-6743
0000-0001-5855-6405
OpenAccessLink https://doi.org/10.1007/s43452-024-00946-1
PQID 3048639004
PQPubID 6587200
ParticipantIDs proquest_journals_3048639004
crossref_primary_10_1007_s43452_024_00946_1
crossref_citationtrail_10_1007_s43452_024_00946_1
springer_journals_10_1007_s43452_024_00946_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-23
PublicationDateYYYYMMDD 2024-04-23
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Wrocław
PublicationTitle Archives of Civil and Mechanical Engineering
PublicationTitleAbbrev Archiv.Civ.Mech.Eng
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ACI CODE-440.11-22: Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary. American Concrete Institute 2023.
Committee CBuilding code requirements for structural concrete (ACI 318-19) and commentary2019American Concrete Institute
Dean G, Crocker L. Comparison of the measured and predicted deformation of an adhesively bonded lap-joint specimen. 2000.
Ghanbari-GhazijahaniTHassanliRManaloASmithSTVincentTGravinaRCyclic behavior of Beam-column pocket connections in GFRP-reinforced precast concrete assemblagesJ Compos Constr2023270402210710.1061/JCCOF2.CCENG-3863
Simulia. Simulia. Providence, Rhode Island. 2020.
WightJKMacGregorJGReinforced concrete2016Pearson Education UK
GooranorimiOClaureGSuarisWNanniABond-slip effect in flexural behavior of GFRP RC slabsCompos Struct2018193808610.1016/j.compstruct.2018.03.027
HassanliRVincentTManaloASmithSTGholampourAGravinaRLarge-scale experimental study on pocket connections in GFRP-reinforced precast concrete framesStructures20213452354110.1016/j.istruc.2021.08.009
ZhangGHanQXuKSongYLiJHeWNumerical analysis and design method of UHPC grouted RC column-footing socket jointsEng Struct202328110.1016/j.engstruct.2023.115755
El-NaqeebMHHassanliRZhugeYMaXManaloANumerical investigation on the behaviour of socket connections in GFRP-reinforced precast concreteEng Struct202430310.1016/j.engstruct.2024.117489
HassanliRVincentTManaloASmithSTGholampourAGravinaRConnections in GFRP reinforced precast concrete framesCompos Struct202127610.1016/j.compstruct.2021.114540
El-NaqeebMHAbdelwahedBSNonlinear finite element investigations on different configurations of exterior beam-column connections with different concrete strengths in column and floorStructures2023501809182610.1016/j.istruc.2023.02.122
Saiidi MS, Mehraein M, Shrestha G, Jordan E, Itani A, Tazarv M et al. Proposed AASHTO seismic specifications for ABC column connections, 2020.
TekleBHKhennaneAKayaliOBond properties of sand-coated GFRP bars with fly ash–based geopolymer concreteJ Compos Constr2016200401602510.1061/(ASCE)CC.1943-5614.0000685
El-NaqeebMHGhanbari-GhazijahaniTGholampourAHassanliRZhugeYMaXCyclic behaviour of an innovative cap beam to column pocketless connection in GFRP-RC precast structuresStructures20246110.1016/j.istruc.2024.106003
WangZWuCLiTXiaoWWeiHQuHExperimental study on the seismic performance of improved grouted corrugated duct connection (GCDC) design for precast concrete bridge columnJ Earthq Eng2022262469249010.1080/13632469.2020.1785356
SunGBaiXSangSZengLYinJJingDNumerical simulation of anchorage performance of GFRP bolt and concreteBuildings20231349310.3390/buildings13020493
TazarvMShresthaGSaiidiMSState-of-the-art review and design of grouted duct connections for precast bridge columnsStructures20213089590910.1016/j.istruc.2020.12.091
El-NaqeebMHEl-MetwallySEAbdelwahedBSPerformance of exterior beam-column connections with innovative bar anchorage schemes: numerical investigationStructures20224453454710.1016/j.istruc.2022.08.034
KuramaYCSritharanSFleischmanRBRestrepoJIHenryRSClelandNMSeismic-resistant precast concrete structures: state of the artJ Struct Eng20181440311800110.1061/(ASCE)ST.1943-541X.0001972
ElchalakaniMKarrechADongMAliMMYangBExperiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loadingStructures20181427328910.1016/j.istruc.2018.04.001
GhomiSKEl-SalakawyEEffect of joint shear stress on seismic behaviour of interior GFRP-RC beam-column jointsEng Struct201919158359710.1016/j.engstruct.2019.04.091
ZhouMZhuGSongJZengHLeeGCAn emulative cast-in-place monolithic bridge column assembled with precast segments and UHPC materialsBull Earthq Eng2022206991701410.1007/s10518-022-01475-z
Eligehausen R, Popov EP, Bertero VV. Local bond stress-slip relationships of deformed bars under generalized excitations. 1982.
MadkourHMaherMAliOFinite element analysis for interior slab-column connections reinforced with GFRP bars using damage plasticity modelJ Build Eng20224810.1016/j.jobe.2022.104013
WangZQuHLiTWeiHWangHDuanHQuasi-static cyclic tests of precast bridge columns with different connection details for high seismic zonesEng Struct2018158132710.1016/j.engstruct.2017.12.035
NgoTTPhamTMHaoHChenWSanHNProposed new dry and hybrid concrete joints with GFRP bolts and GFRP reinforcement under cyclic loading: testing and analysisJ Build Eng20224910.1016/j.jobe.2022.104033
de FreitasAMMenonNVKrahlPANumerical and experimental study of the interaction between stirrups and shear strengthening with CFRP in RC beamsEng Struct202327810.1016/j.engstruct.2022.115514
SajediSHuangQReliability-based life-cycle-cost comparison of different corrosion management strategiesEng Struct2019186526310.1016/j.engstruct.2019.02.018
AslaniFJowkarmeimandiRStress–strain model for concrete under cyclic loadingMag Concr Res20126467368510.1680/macr.11.00120
Thorenfeldt E. Mechanical properties of high-strength concrete and applications in design. In: Symposium Proceedings, Utilization of High-Strength Concrete, Norway, 1987.
IbrahimAMFahmyMFWuZ3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loadingCompos Struct2016143335210.1016/j.compstruct.2016.01.014
ElliottKSPrecast concrete structures2019CRC Press10.1201/9780367814885
CrocePFormichiPLandiFInfluence of reinforcing steel corrosion on life cycle reliability assessment of existing RC buildingsBuildings2020109910.3390/buildings10060099
OtoomOFLokugeWKarunasenaWManaloACOzbakkalogluTThambiratnamDExperimental and numerical evaluation of the compression behaviour of GFRP-wrapped infill materialsCase Stud Constr Mater202115
MadyMEl-RagabyAEl-SalakawyESeismic behavior of beam-column joints reinforced with GFRP bars and stirrupsJ Compos Constr20111587588610.1061/(ASCE)CC.1943-5614.0000220
CaroMJemaaYDirarSQuinnABond performance of deep embedment FRP bars epoxy-bonded into concreteEng Struct201714744845710.1016/j.engstruct.2017.05.069
RezazadehMCarvelliVVeljkovicAModelling bond of GFRP rebar and concreteConstr Build Mater201715310211610.1016/j.conbuildmat.2017.07.092
MorelleXChevalierJBaillyCPardoenTLaniFMechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resinMech Time-Dependent Mater20172141945410.1007/s11043-016-9336-6
GooranorimiOSuarisWNanniAA model for the bond-slip of a GFRP bar in concreteEng Struct2017146344210.1016/j.engstruct.2017.05.034
ZhaoWJiangKYangYNumerical simulation of bent corner of FRP stirrups with rectangular cross sectionsJ Struct Eng20231490402312010.1061/JSENDH.STENG-11950
HoferLZaniniMAFaleschiniFToskaKPellegrinoCSeismic behavior of precast reinforced concrete column-to-foundation grouted duct connectionsBull Earthq Eng2021195191521810.1007/s10518-021-01133-w
946_CR7
R Hassanli (946_CR10) 2021; 276
Committee C (946_CR32) 2019
R Hassanli (946_CR9) 2021; 34
MH El-Naqeeb (946_CR13) 2024; 61
MH El-Naqeeb (946_CR12) 2024; 303
O Gooranorimi (946_CR21) 2017; 146
S Sajedi (946_CR4) 2019; 186
G Zhang (946_CR29) 2023; 281
W Zhao (946_CR26) 2023; 149
MH El-Naqeeb (946_CR34) 2022; 44
Z Wang (946_CR18) 2022; 26
946_CR41
Z Wang (946_CR16) 2018; 158
AM de Freitas (946_CR40) 2023; 278
BH Tekle (946_CR25) 2016; 20
SK Ghomi (946_CR6) 2019; 191
M Caro (946_CR42) 2017; 147
946_CR27
M Mady (946_CR5) 2011; 15
JK Wight (946_CR31) 2016
TT Ngo (946_CR8) 2022; 49
G Sun (946_CR24) 2023; 13
P Croce (946_CR3) 2020; 10
M Rezazadeh (946_CR23) 2017; 153
KS Elliott (946_CR1) 2019
H Madkour (946_CR20) 2022; 48
MH El-Naqeeb (946_CR28) 2023; 50
X Morelle (946_CR37) 2017; 21
YC Kurama (946_CR2) 2018; 144
F Aslani (946_CR33) 2012; 64
946_CR14
M Tazarv (946_CR15) 2021; 30
M Elchalakani (946_CR36) 2018; 14
T Ghanbari-Ghazijahani (946_CR11) 2023; 27
946_CR30
O Gooranorimi (946_CR22) 2018; 193
AM Ibrahim (946_CR35) 2016; 143
M Zhou (946_CR19) 2022; 20
L Hofer (946_CR17) 2021; 19
946_CR38
OF Otoom (946_CR39) 2021; 15
References_xml – reference: GhomiSKEl-SalakawyEEffect of joint shear stress on seismic behaviour of interior GFRP-RC beam-column jointsEng Struct201919158359710.1016/j.engstruct.2019.04.091
– reference: WangZWuCLiTXiaoWWeiHQuHExperimental study on the seismic performance of improved grouted corrugated duct connection (GCDC) design for precast concrete bridge columnJ Earthq Eng2022262469249010.1080/13632469.2020.1785356
– reference: ZhouMZhuGSongJZengHLeeGCAn emulative cast-in-place monolithic bridge column assembled with precast segments and UHPC materialsBull Earthq Eng2022206991701410.1007/s10518-022-01475-z
– reference: OtoomOFLokugeWKarunasenaWManaloACOzbakkalogluTThambiratnamDExperimental and numerical evaluation of the compression behaviour of GFRP-wrapped infill materialsCase Stud Constr Mater202115
– reference: Saiidi MS, Mehraein M, Shrestha G, Jordan E, Itani A, Tazarv M et al. Proposed AASHTO seismic specifications for ABC column connections, 2020.
– reference: El-NaqeebMHEl-MetwallySEAbdelwahedBSPerformance of exterior beam-column connections with innovative bar anchorage schemes: numerical investigationStructures20224453454710.1016/j.istruc.2022.08.034
– reference: ACI CODE-440.11-22: Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary. American Concrete Institute 2023.
– reference: TekleBHKhennaneAKayaliOBond properties of sand-coated GFRP bars with fly ash–based geopolymer concreteJ Compos Constr2016200401602510.1061/(ASCE)CC.1943-5614.0000685
– reference: HassanliRVincentTManaloASmithSTGholampourAGravinaRConnections in GFRP reinforced precast concrete framesCompos Struct202127610.1016/j.compstruct.2021.114540
– reference: Simulia. Simulia. Providence, Rhode Island. 2020.
– reference: CaroMJemaaYDirarSQuinnABond performance of deep embedment FRP bars epoxy-bonded into concreteEng Struct201714744845710.1016/j.engstruct.2017.05.069
– reference: ZhangGHanQXuKSongYLiJHeWNumerical analysis and design method of UHPC grouted RC column-footing socket jointsEng Struct202328110.1016/j.engstruct.2023.115755
– reference: ZhaoWJiangKYangYNumerical simulation of bent corner of FRP stirrups with rectangular cross sectionsJ Struct Eng20231490402312010.1061/JSENDH.STENG-11950
– reference: ElliottKSPrecast concrete structures2019CRC Press10.1201/9780367814885
– reference: IbrahimAMFahmyMFWuZ3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loadingCompos Struct2016143335210.1016/j.compstruct.2016.01.014
– reference: KuramaYCSritharanSFleischmanRBRestrepoJIHenryRSClelandNMSeismic-resistant precast concrete structures: state of the artJ Struct Eng20181440311800110.1061/(ASCE)ST.1943-541X.0001972
– reference: Eligehausen R, Popov EP, Bertero VV. Local bond stress-slip relationships of deformed bars under generalized excitations. 1982.
– reference: GooranorimiOClaureGSuarisWNanniABond-slip effect in flexural behavior of GFRP RC slabsCompos Struct2018193808610.1016/j.compstruct.2018.03.027
– reference: El-NaqeebMHHassanliRZhugeYMaXManaloANumerical investigation on the behaviour of socket connections in GFRP-reinforced precast concreteEng Struct202430310.1016/j.engstruct.2024.117489
– reference: NgoTTPhamTMHaoHChenWSanHNProposed new dry and hybrid concrete joints with GFRP bolts and GFRP reinforcement under cyclic loading: testing and analysisJ Build Eng20224910.1016/j.jobe.2022.104033
– reference: HassanliRVincentTManaloASmithSTGholampourAGravinaRLarge-scale experimental study on pocket connections in GFRP-reinforced precast concrete framesStructures20213452354110.1016/j.istruc.2021.08.009
– reference: WangZQuHLiTWeiHWangHDuanHQuasi-static cyclic tests of precast bridge columns with different connection details for high seismic zonesEng Struct2018158132710.1016/j.engstruct.2017.12.035
– reference: de FreitasAMMenonNVKrahlPANumerical and experimental study of the interaction between stirrups and shear strengthening with CFRP in RC beamsEng Struct202327810.1016/j.engstruct.2022.115514
– reference: CrocePFormichiPLandiFInfluence of reinforcing steel corrosion on life cycle reliability assessment of existing RC buildingsBuildings2020109910.3390/buildings10060099
– reference: Dean G, Crocker L. Comparison of the measured and predicted deformation of an adhesively bonded lap-joint specimen. 2000.
– reference: TazarvMShresthaGSaiidiMSState-of-the-art review and design of grouted duct connections for precast bridge columnsStructures20213089590910.1016/j.istruc.2020.12.091
– reference: SunGBaiXSangSZengLYinJJingDNumerical simulation of anchorage performance of GFRP bolt and concreteBuildings20231349310.3390/buildings13020493
– reference: HoferLZaniniMAFaleschiniFToskaKPellegrinoCSeismic behavior of precast reinforced concrete column-to-foundation grouted duct connectionsBull Earthq Eng2021195191521810.1007/s10518-021-01133-w
– reference: WightJKMacGregorJGReinforced concrete2016Pearson Education UK
– reference: SajediSHuangQReliability-based life-cycle-cost comparison of different corrosion management strategiesEng Struct2019186526310.1016/j.engstruct.2019.02.018
– reference: Thorenfeldt E. Mechanical properties of high-strength concrete and applications in design. In: Symposium Proceedings, Utilization of High-Strength Concrete, Norway, 1987.
– reference: El-NaqeebMHGhanbari-GhazijahaniTGholampourAHassanliRZhugeYMaXCyclic behaviour of an innovative cap beam to column pocketless connection in GFRP-RC precast structuresStructures20246110.1016/j.istruc.2024.106003
– reference: RezazadehMCarvelliVVeljkovicAModelling bond of GFRP rebar and concreteConstr Build Mater201715310211610.1016/j.conbuildmat.2017.07.092
– reference: ElchalakaniMKarrechADongMAliMMYangBExperiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loadingStructures20181427328910.1016/j.istruc.2018.04.001
– reference: MadkourHMaherMAliOFinite element analysis for interior slab-column connections reinforced with GFRP bars using damage plasticity modelJ Build Eng20224810.1016/j.jobe.2022.104013
– reference: AslaniFJowkarmeimandiRStress–strain model for concrete under cyclic loadingMag Concr Res20126467368510.1680/macr.11.00120
– reference: Ghanbari-GhazijahaniTHassanliRManaloASmithSTVincentTGravinaRCyclic behavior of Beam-column pocket connections in GFRP-reinforced precast concrete assemblagesJ Compos Constr2023270402210710.1061/JCCOF2.CCENG-3863
– reference: El-NaqeebMHAbdelwahedBSNonlinear finite element investigations on different configurations of exterior beam-column connections with different concrete strengths in column and floorStructures2023501809182610.1016/j.istruc.2023.02.122
– reference: MadyMEl-RagabyAEl-SalakawyESeismic behavior of beam-column joints reinforced with GFRP bars and stirrupsJ Compos Constr20111587588610.1061/(ASCE)CC.1943-5614.0000220
– reference: Committee CBuilding code requirements for structural concrete (ACI 318-19) and commentary2019American Concrete Institute
– reference: MorelleXChevalierJBaillyCPardoenTLaniFMechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resinMech Time-Dependent Mater20172141945410.1007/s11043-016-9336-6
– reference: GooranorimiOSuarisWNanniAA model for the bond-slip of a GFRP bar in concreteEng Struct2017146344210.1016/j.engstruct.2017.05.034
– ident: 946_CR14
  doi: 10.17226/25803
– volume: 19
  start-page: 5191
  year: 2021
  ident: 946_CR17
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-021-01133-w
– volume-title: Precast concrete structures
  year: 2019
  ident: 946_CR1
  doi: 10.1201/9780367814885
– volume: 153
  start-page: 102
  year: 2017
  ident: 946_CR23
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2017.07.092
– volume: 34
  start-page: 523
  year: 2021
  ident: 946_CR9
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.08.009
– volume: 26
  start-page: 2469
  year: 2022
  ident: 946_CR18
  publication-title: J Earthq Eng
  doi: 10.1080/13632469.2020.1785356
– volume: 10
  start-page: 99
  year: 2020
  ident: 946_CR3
  publication-title: Buildings
  doi: 10.3390/buildings10060099
– volume: 44
  start-page: 534
  year: 2022
  ident: 946_CR34
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.08.034
– volume: 143
  start-page: 33
  year: 2016
  ident: 946_CR35
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2016.01.014
– ident: 946_CR7
– volume: 48
  year: 2022
  ident: 946_CR20
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2022.104013
– volume: 278
  year: 2023
  ident: 946_CR40
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.115514
– volume: 64
  start-page: 673
  year: 2012
  ident: 946_CR33
  publication-title: Mag Concr Res
  doi: 10.1680/macr.11.00120
– volume: 158
  start-page: 13
  year: 2018
  ident: 946_CR16
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.12.035
– ident: 946_CR27
– volume: 27
  start-page: 04022107
  year: 2023
  ident: 946_CR11
  publication-title: J Compos Constr
  doi: 10.1061/JCCOF2.CCENG-3863
– volume: 30
  start-page: 895
  year: 2021
  ident: 946_CR15
  publication-title: Structures
  doi: 10.1016/j.istruc.2020.12.091
– ident: 946_CR38
– volume: 146
  start-page: 34
  year: 2017
  ident: 946_CR21
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.05.034
– ident: 946_CR30
– volume: 20
  start-page: 6991
  year: 2022
  ident: 946_CR19
  publication-title: Bull Earthq Eng
  doi: 10.1007/s10518-022-01475-z
– volume-title: Building code requirements for structural concrete (ACI 318-19) and commentary
  year: 2019
  ident: 946_CR32
– volume: 193
  start-page: 80
  year: 2018
  ident: 946_CR22
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2018.03.027
– volume: 13
  start-page: 493
  year: 2023
  ident: 946_CR24
  publication-title: Buildings
  doi: 10.3390/buildings13020493
– volume: 147
  start-page: 448
  year: 2017
  ident: 946_CR42
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.05.069
– volume: 281
  year: 2023
  ident: 946_CR29
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.115755
– volume: 303
  year: 2024
  ident: 946_CR12
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2024.117489
– volume: 191
  start-page: 583
  year: 2019
  ident: 946_CR6
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.04.091
– volume: 144
  start-page: 03118001
  year: 2018
  ident: 946_CR2
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0001972
– volume: 149
  start-page: 04023120
  year: 2023
  ident: 946_CR26
  publication-title: J Struct Eng
  doi: 10.1061/JSENDH.STENG-11950
– volume: 50
  start-page: 1809
  year: 2023
  ident: 946_CR28
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.02.122
– volume: 20
  start-page: 04016025
  year: 2016
  ident: 946_CR25
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)CC.1943-5614.0000685
– volume: 276
  year: 2021
  ident: 946_CR10
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.114540
– volume: 14
  start-page: 273
  year: 2018
  ident: 946_CR36
  publication-title: Structures
  doi: 10.1016/j.istruc.2018.04.001
– volume: 21
  start-page: 419
  year: 2017
  ident: 946_CR37
  publication-title: Mech Time-Dependent Mater
  doi: 10.1007/s11043-016-9336-6
– volume: 186
  start-page: 52
  year: 2019
  ident: 946_CR4
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.02.018
– volume: 61
  year: 2024
  ident: 946_CR13
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.106003
– volume: 15
  year: 2021
  ident: 946_CR39
  publication-title: Case Stud Constr Mater
– volume: 49
  year: 2022
  ident: 946_CR8
  publication-title: J Build Eng
  doi: 10.1016/j.jobe.2022.104033
– volume-title: Reinforced concrete
  year: 2016
  ident: 946_CR31
– volume: 15
  start-page: 875
  year: 2011
  ident: 946_CR5
  publication-title: J Compos Constr
  doi: 10.1061/(ASCE)CC.1943-5614.0000220
– ident: 946_CR41
SSID ssj0001072165
Score 2.346135
Snippet In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam...
In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Civil Engineering
Concrete
Corrosion
Engineering
Epoxy resins
Fiber reinforced polymers
Glass fiber reinforced plastics
Interaction models
Mechanical Engineering
Original Article
Performance evaluation
Reinforced concrete
Reinforcement
Stress concentration
Structural Materials
Tensile strength
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-iFz2InzidkoM3DTZNmrbeZDiHoIzhYLeSpCkeZjvaDvS_9yXrVh0qeOohLym8l7zPvF8QulRSsBBUP2E6zginmSKKKUkkDw3VoRExtf3OT89iMOaPk2DSwOTYXpi1-v1NxRkPfAKWhNhLcIJApLMVUCZcYVb02nyKBfoSQdMX8_PU77andSjXaqDOtPT30G7jE-K7hRD30YbJD9DOF6TAQ1QO2wv-uMjwQ380JKMenoHCklWNtZxhZeQbrgusrcLJ4QMq1HUtVNhmWzG42u8fBFZ4LUqT4tI40FTt8oO3WOJ8vqjeTLHDnD1C4_79S29AmucSiAZ21ARiWRFrCSGMNkL7PLM88eIoCyyOmRQ8YlnoCRWGqYxULAPlB0oBvWd8qqlix2gzL3JzgjDVqRB-RC22Pmc-lV6qOEQWxr7ryz3dQXTJyEQ3WOL2SYtpskJBdsxP4M-JY35CO-hqNWe2QNL4k7q7lE_SnKoqYRYfkMVwrjvoeimzdvj31U7_R36Gtn23bTjxWRdt1uXcnIPvUasLt-k-ATxbzuA
  priority: 102
  providerName: Springer Nature
Title Performance of GFRP-RC precast cap beam to column connections with epoxy-anchored reinforcement: a numerical study
URI https://link.springer.com/article/10.1007/s43452-024-00946-1
https://www.proquest.com/docview/3048639004
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5qV7KF0_WPoR9LC3Va1lybI9KGULTUJhIYQW-mYkWaYPrZ0mLnQv-9t3Uux6G6wvNsayBKfzT3cn3e8APmsleYzQT7lJCypYoanmWlElYstMbGXKXL7zj6mc3Imb--h-A6ZtLow7VtliogfqvDIuRn7BHTccOuiBuFo8U1c1yu2utiU0VFNaIb_0FGOb0ENITlDve9-vp7N5F3VxdGC-viS6CcJRU0ZNJo3PpxNcRCHFZYu6E3eSsr9Xq84E_WfX1C9Go13YaaxI8m097R9hw5Z78OEPbsF9WM66lABSFWQ8ms_ofEgWCHFqVROjFkRb9UTqihgHUSXeEHR9nsOKuPgsQeP89SfFHh6qpc3J0nqaVeMjil-JIuXLer_nkXiW2gO4G13fDie0KbBADZe8puj9ytQodHqMlSYUhZNPkCZF5JjPlBQJL-JA6jjOVaJTFekw0hrbBzZkhml-CFtlVdpPQJjJpQwT5tj4BQ-ZCnIt0BexrhKwCEwfWCvIzDTs464IxmP2xpvshZ_hyJkXfsb68OXtm8Wae-Pd1ift_GTNf7jKOq3pw1k7Z93r__d29H5vx7AdejURNOQnsFUvX-wpWie1HsDm-S-G12Q0HjTqh09DOfwN_T7hRw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remg5IFpadXnVh3KiVuNHnE0lhBB0WcpDCIHELbUdRz1AsuwGAX-qv5GxNyG0UrlxyiHJOBpPxjNjf98AfDFaiQRdPxU2LahkhaFGGE21TByziVMp83jno2M1PJc_L-KLGfjTYmH8scrWJwZHnVfW18i_Cc8Nhwl6JLdG19R3jfK7q20LjalZHLj7W0zZJpv7uzi_65wPfpztDGnTVYBaoURNMeVTqdUY6VunLJcFZiRJlPaL2NN9aSX7okgiZZIk132T6tjw2Bh8PnKcWWYEyn0Fr6XAj_HI9MFeV9PxZGOheyUmIdITX8YNTieg9aSQMac4CvXn-RRlf6-FXYD7z55sWOoGCzDfxKhke2pU72DGle9h7glz4SKMTzrAAakKsjc4PaGnO2SEDlRPamL1iBinr0hdEesdYIkXdOkBRTEhvvpLMPS_u6co4Xc1djkZu0DiakO98jvRpLyZ7iZdksCB-wHOX0TRH2G2rEr3CQizuVK8zzzXvxSc6Sg3EjMd5_sMy8j2gLWKzGzDbe5bbFxmj6zMQfkZjpwF5WesBxuP74ymzB7PPr3Szk_W_OWTrLPJHnxt56y7_X9pS89L-wxvhmdHh9nh_vHBMrzlwWQk5WIFZuvxjVvFOKg2a8H4CPx6aWt_ALgCE44
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQfQgfuJ0ag7eNKxp0nT1JtP6PcZwsFtI0hQPsx1bB_rfm2TdOkUFTz3kJYX3kveR994vAJxJwUhoVD8iKkoRxalEkkiBBA01VqFmEbb9zs8ddtenD4NgsNTF76rd5ynJWU-DRWnKiuYoSZuLxjdKaOAjY1-QLY1jyMQ_q9SaPpuuZe3qlsXCf7Gg7Jb5eepXi1S5md8yo87gxFtgs_QU4dVMtNtgRWc7YGMJP3AXjLtV2T_MU3gb97qo14Yjo8bEpIBKjKDU4g0WOVRWDWXmYxSr62WYQHsHC40D_v6BzAqv-VgncKwdlKpyt4aXUMBsOsvpDKFDot0D_fjmpX2HykcUkCKMFMhEuCxSwgQ2SjPl09TyxItaaWDRzQSjLZKGHpNhmIiWjEQg_UBKQ-9pHyssyT6oZXmmDwDEKmHMb2GLuE-Jj4WXSGriDW1f-6WeqgM8ZyRXJcK4fehiyBfYyI753PyZO-ZzXAfnizmjGb7Gn9SNuXx4edYmnFjUQBKZ014HF3OZVcO_r3b4P_JTsNa9jvnTfefxCKz7bgdR5JMGqBXjqT42zkkhT9z--wQ7rNoU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+GFRP-RC+precast+cap+beam+to+column+connections+with+epoxy-anchored+reinforcement%3A+a+numerical+study&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.au=El-Naqeeb%2C+Mohamed+H.&rft.au=Hassanli%2C+Reza&rft.au=Zhuge%2C+Yan&rft.au=Ma%2C+Xing&rft.date=2024-04-23&rft.issn=2083-3318&rft.eissn=2083-3318&rft.volume=24&rft.issue=2&rft_id=info:doi/10.1007%2Fs43452-024-00946-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43452_024_00946_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon