Performance of GFRP-RC precast cap beam to column connections with epoxy-anchored reinforcement: a numerical study
In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against...
Saved in:
Published in | Archives of Civil and Mechanical Engineering Vol. 24; no. 2; p. 131 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
23.04.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2083-3318 1644-9665 2083-3318 |
DOI | 10.1007/s43452-024-00946-1 |
Cover
Abstract | In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against three experimental results with different anchored GFRP reinforcement considering the effect of reinforcement slippage. Different interaction models for slippage simulation were evaluated and discussed. The validated model was then utilized to investigate the effect of anchored length, bar diameters, anchored reinforcement amount, and the geometry of the connection. The results indicate that an optimum anchored length, equal to 25 times the bar's diameter, should be provided. It was also found that the precast beam-to-column element connection should be designed for a moment capacity at least 25% higher than that of the column section. Moreover, a minimum beam width, depth and beam overhanging length of 1.75, 1.6 and 0.25 times the column width respectively were recommended to be considered in design. The results from this study can provide direct guidelines for the design of precast GFRP-RC cap beam to the column connection with epoxy anchored reinforcement, especially in applications where precast elements need to be erected quickly, a novel method that can accelerate the construction of jetties and bridges. |
---|---|
AbstractList | In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against three experimental results with different anchored GFRP reinforcement considering the effect of reinforcement slippage. Different interaction models for slippage simulation were evaluated and discussed. The validated model was then utilized to investigate the effect of anchored length, bar diameters, anchored reinforcement amount, and the geometry of the connection. The results indicate that an optimum anchored length, equal to 25 times the bar's diameter, should be provided. It was also found that the precast beam-to-column element connection should be designed for a moment capacity at least 25% higher than that of the column section. Moreover, a minimum beam width, depth and beam overhanging length of 1.75, 1.6 and 0.25 times the column width respectively were recommended to be considered in design. The results from this study can provide direct guidelines for the design of precast GFRP-RC cap beam to the column connection with epoxy anchored reinforcement, especially in applications where precast elements need to be erected quickly, a novel method that can accelerate the construction of jetties and bridges. In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam to column connections connected with epoxy-anchored reinforcement (epoxy duct connection). The developed model was initially validated against three experimental results with different anchored GFRP reinforcement considering the effect of reinforcement slippage. Different interaction models for slippage simulation were evaluated and discussed. The validated model was then utilized to investigate the effect of anchored length, bar diameters, anchored reinforcement amount, and the geometry of the connection. The results indicate that an optimum anchored length, equal to 25 times the bar's diameter, should be provided. It was also found that the precast beam-to-column element connection should be designed for a moment capacity at least 25% higher than that of the column section. Moreover, a minimum beam width, depth and beam overhanging length of 1.75, 1.6 and 0.25 times the column width respectively were recommended to be considered in design. The results from this study can provide direct guidelines for the design of precast GFRP-RC cap beam to the column connection with epoxy anchored reinforcement, especially in applications where precast elements need to be erected quickly, a novel method that can accelerate the construction of jetties and bridges. |
ArticleNumber | 131 |
Author | Zhuge, Yan Ma, Xing El-Naqeeb, Mohamed H. Bazli, Milad Hassanli, Reza Manalo, Allan |
Author_xml | – sequence: 1 givenname: Mohamed H. orcidid: 0000-0002-0573-2978 surname: El-Naqeeb fullname: El-Naqeeb, Mohamed H. organization: UniSA STEM, University of South Australia, School of Engineering and Technology, Badr University in Cairo – sequence: 2 givenname: Reza orcidid: 0000-0001-5855-6405 surname: Hassanli fullname: Hassanli, Reza email: reza.hassanli@unisa.edu.au organization: UniSA STEM, University of South Australia – sequence: 3 givenname: Yan orcidid: 0000-0003-1620-6743 surname: Zhuge fullname: Zhuge, Yan organization: UniSA STEM, University of South Australia – sequence: 4 givenname: Xing orcidid: 0000-0001-5488-5252 surname: Ma fullname: Ma, Xing organization: UniSA STEM, University of South Australia – sequence: 5 givenname: Milad orcidid: 0000-0001-9027-6155 surname: Bazli fullname: Bazli, Milad organization: Faculty of Science and Technology, Charles Darwin University – sequence: 6 givenname: Allan orcidid: 0000-0003-0493-433X surname: Manalo fullname: Manalo, Allan organization: Center for Future Materials, School of Engineering, University of Southern Queensland |
BookMark | eNp9kE9LxDAQxYMo-PcLeAp4jk6atE29yaKrICii55Bmp1rZJjVJ0f32Zl1B8eBp5vB-7828fbLtvENCjjmccoD6LEohy4JBIRlAIyvGt8heAUowIbja_rXvkqMYXwGAQ13wqtwj4R5D58NgnEXqOzq_erhnDzM6BrQmJmrNSFs0A02eWr-cBpeHc2hT712k7316oTj6jxXLDi8-4IIG7F22tDigS-fUUDcNGHprljSmabE6JDudWUY8-p4H5Onq8nF2zW7v5jezi1tmRSUSU0pVjTWyaSxWtpDd-mhoVFfmR8FUUomuhqqt64VRbWPKtijbNusBC255Kw7IycZ3DP5twpj0q5-Cy5FagFSVaABkVhUblQ0-xoCdHkM_mLDSHPS6Xr2pV-dU_VWv5hlSfyDbJ7OuJAXTL_9HxQaNOcc9Y_i56h_qE1QTkOI |
CitedBy_id | crossref_primary_10_1016_j_istruc_2024_107798 crossref_primary_10_1016_j_engstruct_2025_119732 crossref_primary_10_1016_j_engstruct_2024_119184 crossref_primary_10_1016_j_istruc_2024_108109 |
Cites_doi | 10.17226/25803 10.1007/s10518-021-01133-w 10.1201/9780367814885 10.1016/j.conbuildmat.2017.07.092 10.1016/j.istruc.2021.08.009 10.1080/13632469.2020.1785356 10.3390/buildings10060099 10.1016/j.istruc.2022.08.034 10.1016/j.compstruct.2016.01.014 10.1016/j.jobe.2022.104013 10.1016/j.engstruct.2022.115514 10.1680/macr.11.00120 10.1016/j.engstruct.2017.12.035 10.1061/JCCOF2.CCENG-3863 10.1016/j.istruc.2020.12.091 10.1016/j.engstruct.2017.05.034 10.1007/s10518-022-01475-z 10.1016/j.compstruct.2018.03.027 10.3390/buildings13020493 10.1016/j.engstruct.2017.05.069 10.1016/j.engstruct.2023.115755 10.1016/j.engstruct.2024.117489 10.1016/j.engstruct.2019.04.091 10.1061/(ASCE)ST.1943-541X.0001972 10.1061/JSENDH.STENG-11950 10.1016/j.istruc.2023.02.122 10.1061/(ASCE)CC.1943-5614.0000685 10.1016/j.compstruct.2021.114540 10.1016/j.istruc.2018.04.001 10.1007/s11043-016-9336-6 10.1016/j.engstruct.2019.02.018 10.1016/j.istruc.2024.106003 10.1016/j.jobe.2022.104033 10.1061/(ASCE)CC.1943-5614.0000220 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s43452-024-00946-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Engineering Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2083-3318 |
ExternalDocumentID | 10_1007_s43452_024_00946_1 |
GrantInformation_xml | – fundername: University of South Australia |
GroupedDBID | --M .~1 0R~ 1~. 23M 2JY 4.4 406 457 4G. 5GY 7-5 8P~ AACDK AACTN AAEDT AAEPC AAHNG AAIKJ AAJBT AALRI AAOAW AASML AATNV AAUYE ABAKF ABECU ABJNI ABMQK ABTEG ABTKH ABTMW ABXRA ACAOD ACDAQ ACDTI ACGFS ACHSB ACPIV ACZOJ ADBBV ADEZE ADTZH AECPX AEFQL AEKER AEMSY AENEX AESKC AFBBN AFQWF AFTJW AGHFR AGMZJ AGQEE AGUBO AGYEJ AIGIU AILAN AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMXSW AMYLF BLXMC C6C DPUIP EBLON EBS ESX FDB FEDTE FIGPU FIRID FNPLU GBLVA HVGLF IKXTQ IWAJR JJJVA LLZTM MAGPM MO0 NPVJJ NQJWS O-L O9- OAUVE P-8 P-9 P2P PC. PT4 Q38 ROL RSV SDF SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ T5K Y2W ~G- AAYXX ABBRH ABDBE ABFSG ABJCF ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ JZLTJ M7S PHGZM PHGZT PTHSS 8FE 8FG ABRTQ DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c363t-88869ca499ce6c24f0107098f50240a6483f706b77da8b9a5b25bba490e21c1b3 |
IEDL.DBID | BENPR |
ISSN | 2083-3318 1644-9665 |
IngestDate | Fri Jul 25 11:45:39 EDT 2025 Tue Jul 01 04:16:42 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 Fri Feb 21 02:40:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bond simulation Precast duct connection Finite element modelling Anchored reinforcement Epoxy Cap beam GFRP |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-88869ca499ce6c24f0107098f50240a6483f706b77da8b9a5b25bba490e21c1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9027-6155 0000-0001-5488-5252 0000-0002-0573-2978 0000-0003-0493-433X 0000-0003-1620-6743 0000-0001-5855-6405 |
OpenAccessLink | https://doi.org/10.1007/s43452-024-00946-1 |
PQID | 3048639004 |
PQPubID | 6587200 |
ParticipantIDs | proquest_journals_3048639004 crossref_primary_10_1007_s43452_024_00946_1 crossref_citationtrail_10_1007_s43452_024_00946_1 springer_journals_10_1007_s43452_024_00946_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-23 |
PublicationDateYYYYMMDD | 2024-04-23 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Wrocław |
PublicationTitle | Archives of Civil and Mechanical Engineering |
PublicationTitleAbbrev | Archiv.Civ.Mech.Eng |
PublicationYear | 2024 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | ACI CODE-440.11-22: Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary. American Concrete Institute 2023. Committee CBuilding code requirements for structural concrete (ACI 318-19) and commentary2019American Concrete Institute Dean G, Crocker L. Comparison of the measured and predicted deformation of an adhesively bonded lap-joint specimen. 2000. Ghanbari-GhazijahaniTHassanliRManaloASmithSTVincentTGravinaRCyclic behavior of Beam-column pocket connections in GFRP-reinforced precast concrete assemblagesJ Compos Constr2023270402210710.1061/JCCOF2.CCENG-3863 Simulia. Simulia. Providence, Rhode Island. 2020. WightJKMacGregorJGReinforced concrete2016Pearson Education UK GooranorimiOClaureGSuarisWNanniABond-slip effect in flexural behavior of GFRP RC slabsCompos Struct2018193808610.1016/j.compstruct.2018.03.027 HassanliRVincentTManaloASmithSTGholampourAGravinaRLarge-scale experimental study on pocket connections in GFRP-reinforced precast concrete framesStructures20213452354110.1016/j.istruc.2021.08.009 ZhangGHanQXuKSongYLiJHeWNumerical analysis and design method of UHPC grouted RC column-footing socket jointsEng Struct202328110.1016/j.engstruct.2023.115755 El-NaqeebMHHassanliRZhugeYMaXManaloANumerical investigation on the behaviour of socket connections in GFRP-reinforced precast concreteEng Struct202430310.1016/j.engstruct.2024.117489 HassanliRVincentTManaloASmithSTGholampourAGravinaRConnections in GFRP reinforced precast concrete framesCompos Struct202127610.1016/j.compstruct.2021.114540 El-NaqeebMHAbdelwahedBSNonlinear finite element investigations on different configurations of exterior beam-column connections with different concrete strengths in column and floorStructures2023501809182610.1016/j.istruc.2023.02.122 Saiidi MS, Mehraein M, Shrestha G, Jordan E, Itani A, Tazarv M et al. Proposed AASHTO seismic specifications for ABC column connections, 2020. TekleBHKhennaneAKayaliOBond properties of sand-coated GFRP bars with fly ash–based geopolymer concreteJ Compos Constr2016200401602510.1061/(ASCE)CC.1943-5614.0000685 El-NaqeebMHGhanbari-GhazijahaniTGholampourAHassanliRZhugeYMaXCyclic behaviour of an innovative cap beam to column pocketless connection in GFRP-RC precast structuresStructures20246110.1016/j.istruc.2024.106003 WangZWuCLiTXiaoWWeiHQuHExperimental study on the seismic performance of improved grouted corrugated duct connection (GCDC) design for precast concrete bridge columnJ Earthq Eng2022262469249010.1080/13632469.2020.1785356 SunGBaiXSangSZengLYinJJingDNumerical simulation of anchorage performance of GFRP bolt and concreteBuildings20231349310.3390/buildings13020493 TazarvMShresthaGSaiidiMSState-of-the-art review and design of grouted duct connections for precast bridge columnsStructures20213089590910.1016/j.istruc.2020.12.091 El-NaqeebMHEl-MetwallySEAbdelwahedBSPerformance of exterior beam-column connections with innovative bar anchorage schemes: numerical investigationStructures20224453454710.1016/j.istruc.2022.08.034 KuramaYCSritharanSFleischmanRBRestrepoJIHenryRSClelandNMSeismic-resistant precast concrete structures: state of the artJ Struct Eng20181440311800110.1061/(ASCE)ST.1943-541X.0001972 ElchalakaniMKarrechADongMAliMMYangBExperiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loadingStructures20181427328910.1016/j.istruc.2018.04.001 GhomiSKEl-SalakawyEEffect of joint shear stress on seismic behaviour of interior GFRP-RC beam-column jointsEng Struct201919158359710.1016/j.engstruct.2019.04.091 ZhouMZhuGSongJZengHLeeGCAn emulative cast-in-place monolithic bridge column assembled with precast segments and UHPC materialsBull Earthq Eng2022206991701410.1007/s10518-022-01475-z Eligehausen R, Popov EP, Bertero VV. Local bond stress-slip relationships of deformed bars under generalized excitations. 1982. MadkourHMaherMAliOFinite element analysis for interior slab-column connections reinforced with GFRP bars using damage plasticity modelJ Build Eng20224810.1016/j.jobe.2022.104013 WangZQuHLiTWeiHWangHDuanHQuasi-static cyclic tests of precast bridge columns with different connection details for high seismic zonesEng Struct2018158132710.1016/j.engstruct.2017.12.035 NgoTTPhamTMHaoHChenWSanHNProposed new dry and hybrid concrete joints with GFRP bolts and GFRP reinforcement under cyclic loading: testing and analysisJ Build Eng20224910.1016/j.jobe.2022.104033 de FreitasAMMenonNVKrahlPANumerical and experimental study of the interaction between stirrups and shear strengthening with CFRP in RC beamsEng Struct202327810.1016/j.engstruct.2022.115514 SajediSHuangQReliability-based life-cycle-cost comparison of different corrosion management strategiesEng Struct2019186526310.1016/j.engstruct.2019.02.018 AslaniFJowkarmeimandiRStress–strain model for concrete under cyclic loadingMag Concr Res20126467368510.1680/macr.11.00120 Thorenfeldt E. Mechanical properties of high-strength concrete and applications in design. In: Symposium Proceedings, Utilization of High-Strength Concrete, Norway, 1987. IbrahimAMFahmyMFWuZ3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loadingCompos Struct2016143335210.1016/j.compstruct.2016.01.014 ElliottKSPrecast concrete structures2019CRC Press10.1201/9780367814885 CrocePFormichiPLandiFInfluence of reinforcing steel corrosion on life cycle reliability assessment of existing RC buildingsBuildings2020109910.3390/buildings10060099 OtoomOFLokugeWKarunasenaWManaloACOzbakkalogluTThambiratnamDExperimental and numerical evaluation of the compression behaviour of GFRP-wrapped infill materialsCase Stud Constr Mater202115 MadyMEl-RagabyAEl-SalakawyESeismic behavior of beam-column joints reinforced with GFRP bars and stirrupsJ Compos Constr20111587588610.1061/(ASCE)CC.1943-5614.0000220 CaroMJemaaYDirarSQuinnABond performance of deep embedment FRP bars epoxy-bonded into concreteEng Struct201714744845710.1016/j.engstruct.2017.05.069 RezazadehMCarvelliVVeljkovicAModelling bond of GFRP rebar and concreteConstr Build Mater201715310211610.1016/j.conbuildmat.2017.07.092 MorelleXChevalierJBaillyCPardoenTLaniFMechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resinMech Time-Dependent Mater20172141945410.1007/s11043-016-9336-6 GooranorimiOSuarisWNanniAA model for the bond-slip of a GFRP bar in concreteEng Struct2017146344210.1016/j.engstruct.2017.05.034 ZhaoWJiangKYangYNumerical simulation of bent corner of FRP stirrups with rectangular cross sectionsJ Struct Eng20231490402312010.1061/JSENDH.STENG-11950 HoferLZaniniMAFaleschiniFToskaKPellegrinoCSeismic behavior of precast reinforced concrete column-to-foundation grouted duct connectionsBull Earthq Eng2021195191521810.1007/s10518-021-01133-w 946_CR7 R Hassanli (946_CR10) 2021; 276 Committee C (946_CR32) 2019 R Hassanli (946_CR9) 2021; 34 MH El-Naqeeb (946_CR13) 2024; 61 MH El-Naqeeb (946_CR12) 2024; 303 O Gooranorimi (946_CR21) 2017; 146 S Sajedi (946_CR4) 2019; 186 G Zhang (946_CR29) 2023; 281 W Zhao (946_CR26) 2023; 149 MH El-Naqeeb (946_CR34) 2022; 44 Z Wang (946_CR18) 2022; 26 946_CR41 Z Wang (946_CR16) 2018; 158 AM de Freitas (946_CR40) 2023; 278 BH Tekle (946_CR25) 2016; 20 SK Ghomi (946_CR6) 2019; 191 M Caro (946_CR42) 2017; 147 946_CR27 M Mady (946_CR5) 2011; 15 JK Wight (946_CR31) 2016 TT Ngo (946_CR8) 2022; 49 G Sun (946_CR24) 2023; 13 P Croce (946_CR3) 2020; 10 M Rezazadeh (946_CR23) 2017; 153 KS Elliott (946_CR1) 2019 H Madkour (946_CR20) 2022; 48 MH El-Naqeeb (946_CR28) 2023; 50 X Morelle (946_CR37) 2017; 21 YC Kurama (946_CR2) 2018; 144 F Aslani (946_CR33) 2012; 64 946_CR14 M Tazarv (946_CR15) 2021; 30 M Elchalakani (946_CR36) 2018; 14 T Ghanbari-Ghazijahani (946_CR11) 2023; 27 946_CR30 O Gooranorimi (946_CR22) 2018; 193 AM Ibrahim (946_CR35) 2016; 143 M Zhou (946_CR19) 2022; 20 L Hofer (946_CR17) 2021; 19 946_CR38 OF Otoom (946_CR39) 2021; 15 |
References_xml | – reference: GhomiSKEl-SalakawyEEffect of joint shear stress on seismic behaviour of interior GFRP-RC beam-column jointsEng Struct201919158359710.1016/j.engstruct.2019.04.091 – reference: WangZWuCLiTXiaoWWeiHQuHExperimental study on the seismic performance of improved grouted corrugated duct connection (GCDC) design for precast concrete bridge columnJ Earthq Eng2022262469249010.1080/13632469.2020.1785356 – reference: ZhouMZhuGSongJZengHLeeGCAn emulative cast-in-place monolithic bridge column assembled with precast segments and UHPC materialsBull Earthq Eng2022206991701410.1007/s10518-022-01475-z – reference: OtoomOFLokugeWKarunasenaWManaloACOzbakkalogluTThambiratnamDExperimental and numerical evaluation of the compression behaviour of GFRP-wrapped infill materialsCase Stud Constr Mater202115 – reference: Saiidi MS, Mehraein M, Shrestha G, Jordan E, Itani A, Tazarv M et al. Proposed AASHTO seismic specifications for ABC column connections, 2020. – reference: El-NaqeebMHEl-MetwallySEAbdelwahedBSPerformance of exterior beam-column connections with innovative bar anchorage schemes: numerical investigationStructures20224453454710.1016/j.istruc.2022.08.034 – reference: ACI CODE-440.11-22: Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary. American Concrete Institute 2023. – reference: TekleBHKhennaneAKayaliOBond properties of sand-coated GFRP bars with fly ash–based geopolymer concreteJ Compos Constr2016200401602510.1061/(ASCE)CC.1943-5614.0000685 – reference: HassanliRVincentTManaloASmithSTGholampourAGravinaRConnections in GFRP reinforced precast concrete framesCompos Struct202127610.1016/j.compstruct.2021.114540 – reference: Simulia. Simulia. Providence, Rhode Island. 2020. – reference: CaroMJemaaYDirarSQuinnABond performance of deep embedment FRP bars epoxy-bonded into concreteEng Struct201714744845710.1016/j.engstruct.2017.05.069 – reference: ZhangGHanQXuKSongYLiJHeWNumerical analysis and design method of UHPC grouted RC column-footing socket jointsEng Struct202328110.1016/j.engstruct.2023.115755 – reference: ZhaoWJiangKYangYNumerical simulation of bent corner of FRP stirrups with rectangular cross sectionsJ Struct Eng20231490402312010.1061/JSENDH.STENG-11950 – reference: ElliottKSPrecast concrete structures2019CRC Press10.1201/9780367814885 – reference: IbrahimAMFahmyMFWuZ3D finite element modeling of bond-controlled behavior of steel and basalt FRP-reinforced concrete square bridge columns under lateral loadingCompos Struct2016143335210.1016/j.compstruct.2016.01.014 – reference: KuramaYCSritharanSFleischmanRBRestrepoJIHenryRSClelandNMSeismic-resistant precast concrete structures: state of the artJ Struct Eng20181440311800110.1061/(ASCE)ST.1943-541X.0001972 – reference: Eligehausen R, Popov EP, Bertero VV. Local bond stress-slip relationships of deformed bars under generalized excitations. 1982. – reference: GooranorimiOClaureGSuarisWNanniABond-slip effect in flexural behavior of GFRP RC slabsCompos Struct2018193808610.1016/j.compstruct.2018.03.027 – reference: El-NaqeebMHHassanliRZhugeYMaXManaloANumerical investigation on the behaviour of socket connections in GFRP-reinforced precast concreteEng Struct202430310.1016/j.engstruct.2024.117489 – reference: NgoTTPhamTMHaoHChenWSanHNProposed new dry and hybrid concrete joints with GFRP bolts and GFRP reinforcement under cyclic loading: testing and analysisJ Build Eng20224910.1016/j.jobe.2022.104033 – reference: HassanliRVincentTManaloASmithSTGholampourAGravinaRLarge-scale experimental study on pocket connections in GFRP-reinforced precast concrete framesStructures20213452354110.1016/j.istruc.2021.08.009 – reference: WangZQuHLiTWeiHWangHDuanHQuasi-static cyclic tests of precast bridge columns with different connection details for high seismic zonesEng Struct2018158132710.1016/j.engstruct.2017.12.035 – reference: de FreitasAMMenonNVKrahlPANumerical and experimental study of the interaction between stirrups and shear strengthening with CFRP in RC beamsEng Struct202327810.1016/j.engstruct.2022.115514 – reference: CrocePFormichiPLandiFInfluence of reinforcing steel corrosion on life cycle reliability assessment of existing RC buildingsBuildings2020109910.3390/buildings10060099 – reference: Dean G, Crocker L. Comparison of the measured and predicted deformation of an adhesively bonded lap-joint specimen. 2000. – reference: TazarvMShresthaGSaiidiMSState-of-the-art review and design of grouted duct connections for precast bridge columnsStructures20213089590910.1016/j.istruc.2020.12.091 – reference: SunGBaiXSangSZengLYinJJingDNumerical simulation of anchorage performance of GFRP bolt and concreteBuildings20231349310.3390/buildings13020493 – reference: HoferLZaniniMAFaleschiniFToskaKPellegrinoCSeismic behavior of precast reinforced concrete column-to-foundation grouted duct connectionsBull Earthq Eng2021195191521810.1007/s10518-021-01133-w – reference: WightJKMacGregorJGReinforced concrete2016Pearson Education UK – reference: SajediSHuangQReliability-based life-cycle-cost comparison of different corrosion management strategiesEng Struct2019186526310.1016/j.engstruct.2019.02.018 – reference: Thorenfeldt E. Mechanical properties of high-strength concrete and applications in design. In: Symposium Proceedings, Utilization of High-Strength Concrete, Norway, 1987. – reference: El-NaqeebMHGhanbari-GhazijahaniTGholampourAHassanliRZhugeYMaXCyclic behaviour of an innovative cap beam to column pocketless connection in GFRP-RC precast structuresStructures20246110.1016/j.istruc.2024.106003 – reference: RezazadehMCarvelliVVeljkovicAModelling bond of GFRP rebar and concreteConstr Build Mater201715310211610.1016/j.conbuildmat.2017.07.092 – reference: ElchalakaniMKarrechADongMAliMMYangBExperiments and finite element analysis of GFRP reinforced geopolymer concrete rectangular columns subjected to concentric and eccentric axial loadingStructures20181427328910.1016/j.istruc.2018.04.001 – reference: MadkourHMaherMAliOFinite element analysis for interior slab-column connections reinforced with GFRP bars using damage plasticity modelJ Build Eng20224810.1016/j.jobe.2022.104013 – reference: AslaniFJowkarmeimandiRStress–strain model for concrete under cyclic loadingMag Concr Res20126467368510.1680/macr.11.00120 – reference: Ghanbari-GhazijahaniTHassanliRManaloASmithSTVincentTGravinaRCyclic behavior of Beam-column pocket connections in GFRP-reinforced precast concrete assemblagesJ Compos Constr2023270402210710.1061/JCCOF2.CCENG-3863 – reference: El-NaqeebMHAbdelwahedBSNonlinear finite element investigations on different configurations of exterior beam-column connections with different concrete strengths in column and floorStructures2023501809182610.1016/j.istruc.2023.02.122 – reference: MadyMEl-RagabyAEl-SalakawyESeismic behavior of beam-column joints reinforced with GFRP bars and stirrupsJ Compos Constr20111587588610.1061/(ASCE)CC.1943-5614.0000220 – reference: Committee CBuilding code requirements for structural concrete (ACI 318-19) and commentary2019American Concrete Institute – reference: MorelleXChevalierJBaillyCPardoenTLaniFMechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resinMech Time-Dependent Mater20172141945410.1007/s11043-016-9336-6 – reference: GooranorimiOSuarisWNanniAA model for the bond-slip of a GFRP bar in concreteEng Struct2017146344210.1016/j.engstruct.2017.05.034 – ident: 946_CR14 doi: 10.17226/25803 – volume: 19 start-page: 5191 year: 2021 ident: 946_CR17 publication-title: Bull Earthq Eng doi: 10.1007/s10518-021-01133-w – volume-title: Precast concrete structures year: 2019 ident: 946_CR1 doi: 10.1201/9780367814885 – volume: 153 start-page: 102 year: 2017 ident: 946_CR23 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2017.07.092 – volume: 34 start-page: 523 year: 2021 ident: 946_CR9 publication-title: Structures doi: 10.1016/j.istruc.2021.08.009 – volume: 26 start-page: 2469 year: 2022 ident: 946_CR18 publication-title: J Earthq Eng doi: 10.1080/13632469.2020.1785356 – volume: 10 start-page: 99 year: 2020 ident: 946_CR3 publication-title: Buildings doi: 10.3390/buildings10060099 – volume: 44 start-page: 534 year: 2022 ident: 946_CR34 publication-title: Structures doi: 10.1016/j.istruc.2022.08.034 – volume: 143 start-page: 33 year: 2016 ident: 946_CR35 publication-title: Compos Struct doi: 10.1016/j.compstruct.2016.01.014 – ident: 946_CR7 – volume: 48 year: 2022 ident: 946_CR20 publication-title: J Build Eng doi: 10.1016/j.jobe.2022.104013 – volume: 278 year: 2023 ident: 946_CR40 publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.115514 – volume: 64 start-page: 673 year: 2012 ident: 946_CR33 publication-title: Mag Concr Res doi: 10.1680/macr.11.00120 – volume: 158 start-page: 13 year: 2018 ident: 946_CR16 publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.12.035 – ident: 946_CR27 – volume: 27 start-page: 04022107 year: 2023 ident: 946_CR11 publication-title: J Compos Constr doi: 10.1061/JCCOF2.CCENG-3863 – volume: 30 start-page: 895 year: 2021 ident: 946_CR15 publication-title: Structures doi: 10.1016/j.istruc.2020.12.091 – ident: 946_CR38 – volume: 146 start-page: 34 year: 2017 ident: 946_CR21 publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.05.034 – ident: 946_CR30 – volume: 20 start-page: 6991 year: 2022 ident: 946_CR19 publication-title: Bull Earthq Eng doi: 10.1007/s10518-022-01475-z – volume-title: Building code requirements for structural concrete (ACI 318-19) and commentary year: 2019 ident: 946_CR32 – volume: 193 start-page: 80 year: 2018 ident: 946_CR22 publication-title: Compos Struct doi: 10.1016/j.compstruct.2018.03.027 – volume: 13 start-page: 493 year: 2023 ident: 946_CR24 publication-title: Buildings doi: 10.3390/buildings13020493 – volume: 147 start-page: 448 year: 2017 ident: 946_CR42 publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.05.069 – volume: 281 year: 2023 ident: 946_CR29 publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.115755 – volume: 303 year: 2024 ident: 946_CR12 publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.117489 – volume: 191 start-page: 583 year: 2019 ident: 946_CR6 publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.04.091 – volume: 144 start-page: 03118001 year: 2018 ident: 946_CR2 publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0001972 – volume: 149 start-page: 04023120 year: 2023 ident: 946_CR26 publication-title: J Struct Eng doi: 10.1061/JSENDH.STENG-11950 – volume: 50 start-page: 1809 year: 2023 ident: 946_CR28 publication-title: Structures doi: 10.1016/j.istruc.2023.02.122 – volume: 20 start-page: 04016025 year: 2016 ident: 946_CR25 publication-title: J Compos Constr doi: 10.1061/(ASCE)CC.1943-5614.0000685 – volume: 276 year: 2021 ident: 946_CR10 publication-title: Compos Struct doi: 10.1016/j.compstruct.2021.114540 – volume: 14 start-page: 273 year: 2018 ident: 946_CR36 publication-title: Structures doi: 10.1016/j.istruc.2018.04.001 – volume: 21 start-page: 419 year: 2017 ident: 946_CR37 publication-title: Mech Time-Dependent Mater doi: 10.1007/s11043-016-9336-6 – volume: 186 start-page: 52 year: 2019 ident: 946_CR4 publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.02.018 – volume: 61 year: 2024 ident: 946_CR13 publication-title: Structures doi: 10.1016/j.istruc.2024.106003 – volume: 15 year: 2021 ident: 946_CR39 publication-title: Case Stud Constr Mater – volume: 49 year: 2022 ident: 946_CR8 publication-title: J Build Eng doi: 10.1016/j.jobe.2022.104033 – volume-title: Reinforced concrete year: 2016 ident: 946_CR31 – volume: 15 start-page: 875 year: 2011 ident: 946_CR5 publication-title: J Compos Constr doi: 10.1061/(ASCE)CC.1943-5614.0000220 – ident: 946_CR41 |
SSID | ssj0001072165 |
Score | 2.346135 |
Snippet | In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam... In this study, a detailed finite element investigation was conducted to evaluate the performance of glass fibre-reinforced polymer (GFRP) RC precast cap beam... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | Civil Engineering Concrete Corrosion Engineering Epoxy resins Fiber reinforced polymers Glass fiber reinforced plastics Interaction models Mechanical Engineering Original Article Performance evaluation Reinforced concrete Reinforcement Stress concentration Structural Materials Tensile strength |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-iFz2InzidkoM3DTZNmrbeZDiHoIzhYLeSpCkeZjvaDvS_9yXrVh0qeOohLym8l7zPvF8QulRSsBBUP2E6zginmSKKKUkkDw3VoRExtf3OT89iMOaPk2DSwOTYXpi1-v1NxRkPfAKWhNhLcIJApLMVUCZcYVb02nyKBfoSQdMX8_PU77andSjXaqDOtPT30G7jE-K7hRD30YbJD9DOF6TAQ1QO2wv-uMjwQ380JKMenoHCklWNtZxhZeQbrgusrcLJ4QMq1HUtVNhmWzG42u8fBFZ4LUqT4tI40FTt8oO3WOJ8vqjeTLHDnD1C4_79S29AmucSiAZ21ARiWRFrCSGMNkL7PLM88eIoCyyOmRQ8YlnoCRWGqYxULAPlB0oBvWd8qqlix2gzL3JzgjDVqRB-RC22Pmc-lV6qOEQWxr7ryz3dQXTJyEQ3WOL2SYtpskJBdsxP4M-JY35CO-hqNWe2QNL4k7q7lE_SnKoqYRYfkMVwrjvoeimzdvj31U7_R36Gtn23bTjxWRdt1uXcnIPvUasLt-k-ATxbzuA priority: 102 providerName: Springer Nature |
Title | Performance of GFRP-RC precast cap beam to column connections with epoxy-anchored reinforcement: a numerical study |
URI | https://link.springer.com/article/10.1007/s43452-024-00946-1 https://www.proquest.com/docview/3048639004 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5qV7KF0_WPoR9LC3Va1lybI9KGULTUJhIYQW-mYkWaYPrZ0mLnQv-9t3Uux6G6wvNsayBKfzT3cn3e8APmsleYzQT7lJCypYoanmWlElYstMbGXKXL7zj6mc3Imb--h-A6ZtLow7VtliogfqvDIuRn7BHTccOuiBuFo8U1c1yu2utiU0VFNaIb_0FGOb0ENITlDve9-vp7N5F3VxdGC-viS6CcJRU0ZNJo3PpxNcRCHFZYu6E3eSsr9Xq84E_WfX1C9Go13YaaxI8m097R9hw5Z78OEPbsF9WM66lABSFWQ8ms_ofEgWCHFqVROjFkRb9UTqihgHUSXeEHR9nsOKuPgsQeP89SfFHh6qpc3J0nqaVeMjil-JIuXLer_nkXiW2gO4G13fDie0KbBADZe8puj9ytQodHqMlSYUhZNPkCZF5JjPlBQJL-JA6jjOVaJTFekw0hrbBzZkhml-CFtlVdpPQJjJpQwT5tj4BQ-ZCnIt0BexrhKwCEwfWCvIzDTs464IxmP2xpvshZ_hyJkXfsb68OXtm8Wae-Pd1ift_GTNf7jKOq3pw1k7Z93r__d29H5vx7AdejURNOQnsFUvX-wpWie1HsDm-S-G12Q0HjTqh09DOfwN_T7hRw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remg5IFpadXnVh3KiVuNHnE0lhBB0WcpDCIHELbUdRz1AsuwGAX-qv5GxNyG0UrlxyiHJOBpPxjNjf98AfDFaiQRdPxU2LahkhaFGGE21TByziVMp83jno2M1PJc_L-KLGfjTYmH8scrWJwZHnVfW18i_Cc8Nhwl6JLdG19R3jfK7q20LjalZHLj7W0zZJpv7uzi_65wPfpztDGnTVYBaoURNMeVTqdUY6VunLJcFZiRJlPaL2NN9aSX7okgiZZIk132T6tjw2Bh8PnKcWWYEyn0Fr6XAj_HI9MFeV9PxZGOheyUmIdITX8YNTieg9aSQMac4CvXn-RRlf6-FXYD7z55sWOoGCzDfxKhke2pU72DGle9h7glz4SKMTzrAAakKsjc4PaGnO2SEDlRPamL1iBinr0hdEesdYIkXdOkBRTEhvvpLMPS_u6co4Xc1djkZu0DiakO98jvRpLyZ7iZdksCB-wHOX0TRH2G2rEr3CQizuVK8zzzXvxSc6Sg3EjMd5_sMy8j2gLWKzGzDbe5bbFxmj6zMQfkZjpwF5WesBxuP74ymzB7PPr3Szk_W_OWTrLPJHnxt56y7_X9pS89L-wxvhmdHh9nh_vHBMrzlwWQk5WIFZuvxjVvFOKg2a8H4CPx6aWt_ALgCE44 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yQfQgfuJ0ag7eNKxp0nT1JtP6PcZwsFtI0hQPsx1bB_rfm2TdOkUFTz3kJYX3kveR994vAJxJwUhoVD8iKkoRxalEkkiBBA01VqFmEbb9zs8ddtenD4NgsNTF76rd5ynJWU-DRWnKiuYoSZuLxjdKaOAjY1-QLY1jyMQ_q9SaPpuuZe3qlsXCf7Gg7Jb5eepXi1S5md8yo87gxFtgs_QU4dVMtNtgRWc7YGMJP3AXjLtV2T_MU3gb97qo14Yjo8bEpIBKjKDU4g0WOVRWDWXmYxSr62WYQHsHC40D_v6BzAqv-VgncKwdlKpyt4aXUMBsOsvpDKFDot0D_fjmpX2HykcUkCKMFMhEuCxSwgQ2SjPl09TyxItaaWDRzQSjLZKGHpNhmIiWjEQg_UBKQ-9pHyssyT6oZXmmDwDEKmHMb2GLuE-Jj4WXSGriDW1f-6WeqgM8ZyRXJcK4fehiyBfYyI753PyZO-ZzXAfnizmjGb7Gn9SNuXx4edYmnFjUQBKZ014HF3OZVcO_r3b4P_JTsNa9jvnTfefxCKz7bgdR5JMGqBXjqT42zkkhT9z--wQ7rNoU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+GFRP-RC+precast+cap+beam+to+column+connections+with+epoxy-anchored+reinforcement%3A+a+numerical+study&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.au=El-Naqeeb%2C+Mohamed+H.&rft.au=Hassanli%2C+Reza&rft.au=Zhuge%2C+Yan&rft.au=Ma%2C+Xing&rft.date=2024-04-23&rft.issn=2083-3318&rft.eissn=2083-3318&rft.volume=24&rft.issue=2&rft_id=info:doi/10.1007%2Fs43452-024-00946-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43452_024_00946_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2083-3318&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2083-3318&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2083-3318&client=summon |