Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs
We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation...
Saved in:
Published in | Advances in computational mathematics Vol. 47; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1019-7168 1572-9044 |
DOI | 10.1007/s10444-020-09834-7 |
Cover
Loading…
Abstract | We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation of these functions suffers from a curse of dimension. We demonstrate that through their inherent compositionality deep neural networks can resolve the characteristic flow underlying the transport equations and thereby allow approximation rates independent of the parameter dimension. |
---|---|
AbstractList | We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation of these functions suffers from a curse of dimension. We demonstrate that through their inherent compositionality deep neural networks can resolve the characteristic flow underlying the transport equations and thereby allow approximation rates independent of the parameter dimension. |
ArticleNumber | 11 |
Author | Petersen, Philipp Laakmann, Fabian |
Author_xml | – sequence: 1 givenname: Fabian surname: Laakmann fullname: Laakmann, Fabian organization: Mathematical Institute, University of Oxford – sequence: 2 givenname: Philipp orcidid: 0000-0003-3566-1020 surname: Petersen fullname: Petersen, Philipp email: Philipp.Petersen@univie.ac.at organization: Institut für Mathematik, Universität Wien |
BookMark | eNp9kEtLAzEUhYMo2Fb_gKuA62iSyWOylFofUCqI3bgJmTSRKe1kmsyA_femHUFw0VVuuOe7954zBudNaBwANwTfEYzlfSKYMYYwxQirsmBInoER4ZIilRvnucZEIUlEeQnGKa0xxkpIPgKfM-9rW7umg6ZtY_iut6arQwODhyls-kOdDp_WRLN1Xawt3NSNMxF20TSpDbGDbtebQVjt4bubL-HjYpGuwIU3m-Suf98JWD7NPqYvaP72_Dp9mCNbiKJDpaRWcKZsSZxYOSm5p75QtOKESFZZ6QyrhPPCcVVUYoVLQri3rOKCK4JVMQG3w9x8_q53qdPr0Mcmr9SUlVSxPJxkFR1UNoaUovO6jdlr3GuC9SFDPWSoc4b6mKGWGSr_Qbbujlaz-XpzGi0GNOU9zZeLf1edoH4AHSSIRA |
CitedBy_id | crossref_primary_10_1186_s13662_023_03787_z crossref_primary_10_1007_s00211_024_01428_5 crossref_primary_10_1016_j_camwa_2024_06_008 crossref_primary_10_1007_s00365_024_09694_0 crossref_primary_10_1090_mcom_3781 crossref_primary_10_1093_imanum_drab032 crossref_primary_10_1515_ijnsns_2021_0192 crossref_primary_10_1007_s11676_023_01652_z crossref_primary_10_1002_gamm_202100006 crossref_primary_10_1090_mcom_3934 crossref_primary_10_1155_2021_8109496 crossref_primary_10_1016_j_advwatres_2021_104098 crossref_primary_10_1007_s00365_024_09699_9 crossref_primary_10_1007_s10208_022_09565_9 crossref_primary_10_1007_s10915_021_01532_w crossref_primary_10_1093_imatrm_tnac001 crossref_primary_10_1007_s43670_022_00040_8 crossref_primary_10_1142_S0219530522500129 crossref_primary_10_1214_22_AAP1884 |
Cites_doi | 10.1007/978-3-319-02090-7 10.1016/j.neunet.2017.07.002 10.1007/s10915-021-01462-7 10.1137/18M118709X 10.1090/gsm/019 10.1016/j.acha.2016.04.003 10.1007/s42985-019-0006-9 10.1016/j.jcp.2018.08.029 10.1109/18.256500 10.1090/mcom/3505 10.1016/j.jco.2008.11.002 10.1017/CBO9780511612374 10.1007/978-3-540-75914-0_1 10.1007/978-3-319-22470-1 10.1016/0893-6080(89)90020-8 10.1007/s11633-017-1054-2 10.1038/nature14539 10.1007/BF02551274 10.1016/j.cam.2018.02.023 10.1007/BF01393835 10.1137/1.9780898719222 10.1007/s40304-018-0127-z 10.1007/BF02070821 10.1051/m2an/2013103 10.1142/S0219530518500203 10.1007/978-1-4684-0059-5 10.1142/S021820251150014X 10.1186/2193-1801-3-230 10.1002/9783527617234 10.1016/j.jat.2018.05.003 10.1016/j.neunet.2018.08.019 10.1073/pnas.38.8.716 10.1162/neco.1996.8.1.164 10.1007/978-3-319-08159-5_2 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10444-020-09834-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_020_09834_7 |
GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-872c6549c81e6de775f2f392b51174bc7ea4b6ef6e593b6d08115fc4b56591093 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Sun Jul 20 04:10:48 EDT 2025 Tue Jul 01 02:55:34 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Fri Feb 21 02:48:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 41A46 Deep neural networks 35Q49 41A25 Transport equations 68T05 35A35 Parametric PDEs Approximation rates Curse of dimension 65N30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-872c6549c81e6de775f2f392b51174bc7ea4b6ef6e593b6d08115fc4b56591093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3566-1020 |
OpenAccessLink | https://link.springer.com/10.1007/s10444-020-09834-7 |
PQID | 2482945491 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_2482945491 crossref_primary_10_1007_s10444_020_09834_7 crossref_citationtrail_10_1007_s10444_020_09834_7 springer_journals_10_1007_s10444_020_09834_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Opschoor, J.A.A., Schwab, C., Zech, J.: Exponential ReLU DNN expression of holomorphic maps in high dimension. Technical Report 2019-35, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2019) DiPernaRJLionsPLOrdinary differential equations, transport theory and Sobolev spacesInvent. Math.1989983511547102230510.1007/BF01393835 BellmanROn the theory of dynamic programmingProc. Natl. Acad. Sci. U.S.A.19523887165085610.1073/pnas.38.8.716 Elbrächter, D., Grohs, P., Jentzen, A., Schwab, C.: DNN expression rate analysis of high-dimensional PDEs: application to option pricing. arXiv:1809.07669 (2018) Allaire, G., Blanc, X., Després, B., Golse, F.: Transport et diffusion. Ecole Polytechnique (2019) Evans, L.: Partial differential equations. American Mathematical Society (2010) JohnFPartial differential equations1978USSpringer10.1007/978-1-4684-0059-5 PoggioTMhaskarHRosascoLMirandaBLiaoQWhy and when can deep-but not shallow-networks avoid the curse of dimensionality: a reviewInt. J. Autom. Comput.201714550351910.1007/s11633-017-1054-2 Dahmen, W., Huang, C., Kutyniok, G., Lim, W.-Q., Schwab, C., Welper, G.: Efficient resolution of anisotropic structures. In: Extraction of Quantifiable Information from Complex Systems, pp 25–51. Springer (2014) HesthavenJSRozzaGStammBCertified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 5902016BerlinSpringer10.1007/978-3-319-22470-1 BarronARUniversal approximation bounds for superpositions of a sigmoidal functionIEEE Transactions on Information Theory1993393930945123772010.1109/18.256500 SirignanoJSpiliopoulosKDGM: a deep learning algorithm for solving partial differential equationsJ. Comput. Phys.201837513391364387458510.1016/j.jcp.2018.08.029 CybenkoGApproximation by superpositions of a sigmoidal functionMathematics of Control, Signals and Systems198924303314101567010.1007/BF02551274 Grella, K.: Sparse tensor approximation for radiative transport. PhD thesis, ETH Zurich (2013) LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539 Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. arXiv:1511.02021 (2015) EWYuBThe deep ritz method: a deep learning-based numerical algorithm for solving variational problemsCommunications in Mathematics and Statistics201861112376795810.1007/s40304-018-0127-z He, J., Li, L., Xu, J., Zheng, C.: ReLU deep Neural Networks and Linear Finite Elements. arXiv:1807.03973 (2018) Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows. Birkhäuser-Verlag (2005) MhaskarHNNeural networks for optimal approximation of smooth and analytic functionsNeural Comput.19968116417710.1162/neco.1996.8.1.164 DahmenWKutyniokGLimW-QSchwabCWelperGAdaptive anisotropic Petrov–Galerkin methods for first order transport equationsJ. Comput. Appl. Math.2018340191220380779610.1016/j.cam.2018.02.023 F. Golse.: Distributions, analyse de Fourier, équations aux dérivées partielles. Ecole polytechnique (2012) Hartman, P.: Ordinary differential equations. Society for Industrial and Applied Mathematics (2002) HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal approximatorsNeural Networks19892535936610.1016/0893-6080(89)90020-8 Laakmann, F.: A theoretical analysis of high-dimensional parametric transport equations and neural networks. Project thesis, University of Oxford (2019) Ambrosio, L.: Transport equation and cauchy problem for non-smooth vector fields. In: Calculus of Variations and Nonlinear Partial Differential Equations, pp 1–41. Springer, Berlin (2008) Mouhot, C.: Hyperbolicity: scalar transport equations, wave equations. University of Cambridge. https://cmouhot.files.wordpress.com/1900/10/chapter41.pdf (2013) YarotskyDError bounds for approximations with deep reLU networksNeural Netw.20179410311410.1016/j.neunet.2017.07.002 MhaskarHNApproximation properties of a multilayered feedforward artificial neural networkAdv. Comput. Math.1993116180123025110.1007/BF02070821 DahmenWPleskenCWelperGDouble greedy algorithms: reduced basis methods for transport dominated problemsESAIM: Mathematical Modelling and Numerical Analysis2014483623663317786010.1051/m2an/2013103 Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Applied Mathematics, 4. Gauthier-Villars, Editions Scientifiques et M’edicales Elsevie (2000) Opschoor, J.A., Petersen, P., Schwab, C.: Deep ReLU networks and high-order finite element methods. Analysis and Applications (in Press) Dahmen, W., Gruber, F., Mula, O.: An adaptive nested source term iteration for radiative transfer equations. Mathematics of Computation (2020) Berner, J., Grohs, P., Jentzen, A.: Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. arXiv:1809.03062 (2018) Horn, R.A., Johnson, C.R. (eds.): Matrix Analysis. Cambridge University Press, Cambridge (1985) Beck, C., Jentzen, A., Kuckuck, B.: Full error analysis for the training of deep neural networks. arXiv:1910.00121 (2019) Chen, M., Jiang, H., Liao, W., Zhao, T.: Efficient approximation of deep relu networks for functions on low dimensional manifolds. In: Advances in Neural Information Processing Systems, pp 8172–8182 (2019) Suzuki, T.: Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality. arXiv:1810.08033 (2018) CourantRHilbertDMethods of Mathematical Physics1989New YorkWiley10.1002/9783527617234 Schmidt-Hieber, J.: Deep ReLU network approximation of functions on a manifold. arXiv:1908.00695 (2019) BölcskeiHGrohsPKutyniokGPetersenPOptimal approximation with sparsely connected deep neural networksSIAM Journal on Mathematics of Data Science201911845394969910.1137/18M118709X QuarteroniARozzaGReduced Order Methods for Modeling and Computational Reduction, vol. 92014BerlinSpringer10.1007/978-3-319-02090-7 ObermeierAGrohsPOn the approximation of functions with line singularities by ridgeletsJournal of Approximation Theory20192373095386862610.1016/j.jat.2018.05.003 ShahamUCloningerACoifmanRRProvable approximation properties for deep neural networksAppl. Comput Harmon. Anal.2018443537557376885110.1016/j.acha.2016.04.003 PetersenPVoigtlaenderFOptimal approximation of piecewise smooth functions using deep reLU neural networksNeural Netw.201810829633010.1016/j.neunet.2018.08.019 Golse, F.: Lecture notes on mean field kinetic equations. https://www.cmls.polytechnique.fr/perso/golse/M2/PolyKinetic.pdf (2013) Serre, D.: Systems of Conservation Laws 1. Cambridge University Press (1999) Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks and parametric PDEs. arXiv:1904.00377(2019) Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A.: A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. arXiv:1901.10854(2019) Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and kolmogorov equations by means of deep learning. arXiv:1806.00421 (2018) SchwabCZechJDeep learning in high dimension: neural network expression rates for generalized polynomial chaos expansions in UQAnal. Appl.201917011955389473210.1142/S0219530518500203 NovakEWoźniakowskiHApproximation of infinitely differentiable multivariate functions is intractableJ. Complex.2009254398404254203910.1016/j.jco.2008.11.002 GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009http://www.deeplearningbook.org Montanelli, H., Yang, H., Du, Q.: Deep ReLU networks overcome the curse of dimensionality for bandlimited functions. arXiv:1903.00735 (2019) Gühring, I., Kutyniok, G., Petersen, P.: Error bounds for approximations with deep ReLU neural networks in Ws,p norms. Analysis and Applications (in Press) EggerHSchlottbomMA mixed variational framework for the radiative transfer equationMathematical Models and Methods in Applied Sciences201222031150014289045210.1142/S021820251150014X Fresca, S., Dede, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. arXiv:2001.04001 (2020) 9834_CR15 9834_CR14 W Dahmen (9834_CR16) 2018; 340 HN Mhaskar (9834_CR40) 1996; 8 9834_CR51 9834_CR11 9834_CR56 9834_CR53 9834_CR10 AR Barron (9834_CR4) 1993; 39 A Obermeier (9834_CR44) 2019; 237 9834_CR46 9834_CR47 W Dahmen (9834_CR17) 2014; 48 C Schwab (9834_CR52) 2019; 17 HN Mhaskar (9834_CR39) 1993; 1 9834_CR1 H Bölcskei (9834_CR9) 2019; 1 9834_CR2 JS Hesthaven (9834_CR31) 2016 9834_CR3 9834_CR5 9834_CR6 9834_CR41 A Quarteroni (9834_CR50) 2014 9834_CR8 9834_CR45 9834_CR42 9834_CR37 9834_CR36 K Hornik (9834_CR33) 1989; 2 J Sirignano (9834_CR55) 2018; 375 I Goodfellow (9834_CR26) 2016 E Novak (9834_CR43) 2009; 25 9834_CR30 F John (9834_CR35) 1978 U Shaham (9834_CR54) 2018; 44 9834_CR34 H Egger (9834_CR20) 2012; 22 9834_CR32 D Yarotsky (9834_CR57) 2017; 94 RJ DiPerna (9834_CR18) 1989; 98 9834_CR27 9834_CR24 R Bellman (9834_CR7) 1952; 38 9834_CR25 Y LeCun (9834_CR38) 2015; 521 9834_CR28 G Cybenko (9834_CR13) 1989; 2 9834_CR29 P Petersen (9834_CR48) 2018; 108 R Courant (9834_CR12) 1989 W E (9834_CR19) 2018; 6 T Poggio (9834_CR49) 2017; 14 9834_CR22 9834_CR23 9834_CR21 |
References_xml | – reference: Evans, L.: Partial differential equations. American Mathematical Society (2010) – reference: Dahmen, W., Gruber, F., Mula, O.: An adaptive nested source term iteration for radiative transfer equations. Mathematics of Computation (2020) – reference: He, J., Li, L., Xu, J., Zheng, C.: ReLU deep Neural Networks and Linear Finite Elements. arXiv:1807.03973 (2018) – reference: SirignanoJSpiliopoulosKDGM: a deep learning algorithm for solving partial differential equationsJ. Comput. Phys.201837513391364387458510.1016/j.jcp.2018.08.029 – reference: EWYuBThe deep ritz method: a deep learning-based numerical algorithm for solving variational problemsCommunications in Mathematics and Statistics201861112376795810.1007/s40304-018-0127-z – reference: Allaire, G., Blanc, X., Després, B., Golse, F.: Transport et diffusion. Ecole Polytechnique (2019) – reference: GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009http://www.deeplearningbook.org – reference: DahmenWPleskenCWelperGDouble greedy algorithms: reduced basis methods for transport dominated problemsESAIM: Mathematical Modelling and Numerical Analysis2014483623663317786010.1051/m2an/2013103 – reference: DiPernaRJLionsPLOrdinary differential equations, transport theory and Sobolev spacesInvent. Math.1989983511547102230510.1007/BF01393835 – reference: Serre, D.: Systems of Conservation Laws 1. Cambridge University Press (1999) – reference: Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A.: A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. arXiv:1901.10854(2019) – reference: Suzuki, T.: Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality. arXiv:1810.08033 (2018) – reference: BarronARUniversal approximation bounds for superpositions of a sigmoidal functionIEEE Transactions on Information Theory1993393930945123772010.1109/18.256500 – reference: Opschoor, J.A.A., Schwab, C., Zech, J.: Exponential ReLU DNN expression of holomorphic maps in high dimension. Technical Report 2019-35, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2019) – reference: Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and kolmogorov equations by means of deep learning. arXiv:1806.00421 (2018) – reference: EggerHSchlottbomMA mixed variational framework for the radiative transfer equationMathematical Models and Methods in Applied Sciences201222031150014289045210.1142/S021820251150014X – reference: Elbrächter, D., Grohs, P., Jentzen, A., Schwab, C.: DNN expression rate analysis of high-dimensional PDEs: application to option pricing. arXiv:1809.07669 (2018) – reference: JohnFPartial differential equations1978USSpringer10.1007/978-1-4684-0059-5 – reference: YarotskyDError bounds for approximations with deep reLU networksNeural Netw.20179410311410.1016/j.neunet.2017.07.002 – reference: BölcskeiHGrohsPKutyniokGPetersenPOptimal approximation with sparsely connected deep neural networksSIAM Journal on Mathematics of Data Science201911845394969910.1137/18M118709X – reference: Schmidt-Hieber, J.: Deep ReLU network approximation of functions on a manifold. arXiv:1908.00695 (2019) – reference: Montanelli, H., Yang, H., Du, Q.: Deep ReLU networks overcome the curse of dimensionality for bandlimited functions. arXiv:1903.00735 (2019) – reference: Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks and parametric PDEs. arXiv:1904.00377(2019) – reference: PoggioTMhaskarHRosascoLMirandaBLiaoQWhy and when can deep-but not shallow-networks avoid the curse of dimensionality: a reviewInt. J. Autom. Comput.201714550351910.1007/s11633-017-1054-2 – reference: Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows. Birkhäuser-Verlag (2005) – reference: SchwabCZechJDeep learning in high dimension: neural network expression rates for generalized polynomial chaos expansions in UQAnal. Appl.201917011955389473210.1142/S0219530518500203 – reference: Laakmann, F.: A theoretical analysis of high-dimensional parametric transport equations and neural networks. Project thesis, University of Oxford (2019) – reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539 – reference: Grella, K.: Sparse tensor approximation for radiative transport. PhD thesis, ETH Zurich (2013) – reference: NovakEWoźniakowskiHApproximation of infinitely differentiable multivariate functions is intractableJ. Complex.2009254398404254203910.1016/j.jco.2008.11.002 – reference: Hartman, P.: Ordinary differential equations. Society for Industrial and Applied Mathematics (2002) – reference: Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. arXiv:1511.02021 (2015) – reference: Dahmen, W., Huang, C., Kutyniok, G., Lim, W.-Q., Schwab, C., Welper, G.: Efficient resolution of anisotropic structures. In: Extraction of Quantifiable Information from Complex Systems, pp 25–51. Springer (2014) – reference: Gühring, I., Kutyniok, G., Petersen, P.: Error bounds for approximations with deep ReLU neural networks in Ws,p norms. Analysis and Applications (in Press) – reference: QuarteroniARozzaGReduced Order Methods for Modeling and Computational Reduction, vol. 92014BerlinSpringer10.1007/978-3-319-02090-7 – reference: Ambrosio, L.: Transport equation and cauchy problem for non-smooth vector fields. In: Calculus of Variations and Nonlinear Partial Differential Equations, pp 1–41. Springer, Berlin (2008) – reference: Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Applied Mathematics, 4. Gauthier-Villars, Editions Scientifiques et M’edicales Elsevie (2000) – reference: , F. Golse.: Distributions, analyse de Fourier, équations aux dérivées partielles. Ecole polytechnique (2012) – reference: PetersenPVoigtlaenderFOptimal approximation of piecewise smooth functions using deep reLU neural networksNeural Netw.201810829633010.1016/j.neunet.2018.08.019 – reference: Fresca, S., Dede, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. arXiv:2001.04001 (2020) – reference: CybenkoGApproximation by superpositions of a sigmoidal functionMathematics of Control, Signals and Systems198924303314101567010.1007/BF02551274 – reference: HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal approximatorsNeural Networks19892535936610.1016/0893-6080(89)90020-8 – reference: BellmanROn the theory of dynamic programmingProc. Natl. Acad. Sci. U.S.A.19523887165085610.1073/pnas.38.8.716 – reference: Opschoor, J.A., Petersen, P., Schwab, C.: Deep ReLU networks and high-order finite element methods. Analysis and Applications (in Press) – reference: ObermeierAGrohsPOn the approximation of functions with line singularities by ridgeletsJournal of Approximation Theory20192373095386862610.1016/j.jat.2018.05.003 – reference: Golse, F.: Lecture notes on mean field kinetic equations. https://www.cmls.polytechnique.fr/perso/golse/M2/PolyKinetic.pdf (2013) – reference: Chen, M., Jiang, H., Liao, W., Zhao, T.: Efficient approximation of deep relu networks for functions on low dimensional manifolds. In: Advances in Neural Information Processing Systems, pp 8172–8182 (2019) – reference: CourantRHilbertDMethods of Mathematical Physics1989New YorkWiley10.1002/9783527617234 – reference: Beck, C., Jentzen, A., Kuckuck, B.: Full error analysis for the training of deep neural networks. arXiv:1910.00121 (2019) – reference: Horn, R.A., Johnson, C.R. (eds.): Matrix Analysis. Cambridge University Press, Cambridge (1985) – reference: Berner, J., Grohs, P., Jentzen, A.: Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. arXiv:1809.03062 (2018) – reference: MhaskarHNApproximation properties of a multilayered feedforward artificial neural networkAdv. Comput. Math.1993116180123025110.1007/BF02070821 – reference: MhaskarHNNeural networks for optimal approximation of smooth and analytic functionsNeural Comput.19968116417710.1162/neco.1996.8.1.164 – reference: HesthavenJSRozzaGStammBCertified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 5902016BerlinSpringer10.1007/978-3-319-22470-1 – reference: ShahamUCloningerACoifmanRRProvable approximation properties for deep neural networksAppl. Comput Harmon. Anal.2018443537557376885110.1016/j.acha.2016.04.003 – reference: Mouhot, C.: Hyperbolicity: scalar transport equations, wave equations. University of Cambridge. https://cmouhot.files.wordpress.com/1900/10/chapter41.pdf (2013) – reference: DahmenWKutyniokGLimW-QSchwabCWelperGAdaptive anisotropic Petrov–Galerkin methods for first order transport equationsJ. Comput. Appl. Math.2018340191220380779610.1016/j.cam.2018.02.023 – volume-title: Reduced Order Methods for Modeling and Computational Reduction, vol. 9 year: 2014 ident: 9834_CR50 doi: 10.1007/978-3-319-02090-7 – ident: 9834_CR6 – volume: 94 start-page: 103 year: 2017 ident: 9834_CR57 publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.002 – ident: 9834_CR45 – ident: 9834_CR23 doi: 10.1007/s10915-021-01462-7 – volume: 1 start-page: 8 issue: 1 year: 2019 ident: 9834_CR9 publication-title: SIAM Journal on Mathematics of Data Science doi: 10.1137/18M118709X – ident: 9834_CR22 doi: 10.1090/gsm/019 – ident: 9834_CR41 – ident: 9834_CR5 – volume: 44 start-page: 537 issue: 3 year: 2018 ident: 9834_CR54 publication-title: Appl. Comput Harmon. Anal. doi: 10.1016/j.acha.2016.04.003 – ident: 9834_CR34 doi: 10.1007/s42985-019-0006-9 – volume: 375 start-page: 1339 year: 2018 ident: 9834_CR55 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – ident: 9834_CR51 – volume: 39 start-page: 930 issue: 3 year: 1993 ident: 9834_CR4 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.256500 – ident: 9834_CR14 doi: 10.1090/mcom/3505 – ident: 9834_CR1 – ident: 9834_CR30 – volume: 25 start-page: 398 issue: 4 year: 2009 ident: 9834_CR43 publication-title: J. Complex. doi: 10.1016/j.jco.2008.11.002 – ident: 9834_CR53 doi: 10.1017/CBO9780511612374 – ident: 9834_CR2 doi: 10.1007/978-3-540-75914-0_1 – volume-title: Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 590 year: 2016 ident: 9834_CR31 doi: 10.1007/978-3-319-22470-1 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 9834_CR33 publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – ident: 9834_CR10 – volume: 14 start-page: 503 issue: 5 year: 2017 ident: 9834_CR49 publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-017-1054-2 – ident: 9834_CR56 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 9834_CR38 publication-title: Nature doi: 10.1038/nature14539 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 9834_CR13 publication-title: Mathematics of Control, Signals and Systems doi: 10.1007/BF02551274 – ident: 9834_CR8 – ident: 9834_CR37 – volume-title: Deep Learning year: 2016 ident: 9834_CR26 – ident: 9834_CR47 – volume: 340 start-page: 191 year: 2018 ident: 9834_CR16 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.02.023 – volume: 98 start-page: 511 issue: 3 year: 1989 ident: 9834_CR18 publication-title: Invent. Math. doi: 10.1007/BF01393835 – ident: 9834_CR29 doi: 10.1137/1.9780898719222 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 9834_CR19 publication-title: Communications in Mathematics and Statistics doi: 10.1007/s40304-018-0127-z – ident: 9834_CR28 – volume: 1 start-page: 61 issue: 1 year: 1993 ident: 9834_CR39 publication-title: Adv. Comput. Math. doi: 10.1007/BF02070821 – ident: 9834_CR24 – volume: 48 start-page: 623 issue: 3 year: 2014 ident: 9834_CR17 publication-title: ESAIM: Mathematical Modelling and Numerical Analysis doi: 10.1051/m2an/2013103 – volume: 17 start-page: 19 issue: 01 year: 2019 ident: 9834_CR52 publication-title: Anal. Appl. doi: 10.1142/S0219530518500203 – volume-title: Partial differential equations year: 1978 ident: 9834_CR35 doi: 10.1007/978-1-4684-0059-5 – volume: 22 start-page: 1150014 issue: 03 year: 2012 ident: 9834_CR20 publication-title: Mathematical Models and Methods in Applied Sciences doi: 10.1142/S021820251150014X – ident: 9834_CR27 doi: 10.1186/2193-1801-3-230 – volume-title: Methods of Mathematical Physics year: 1989 ident: 9834_CR12 doi: 10.1002/9783527617234 – ident: 9834_CR36 – ident: 9834_CR3 – ident: 9834_CR11 – ident: 9834_CR32 – volume: 237 start-page: 30 year: 2019 ident: 9834_CR44 publication-title: Journal of Approximation Theory doi: 10.1016/j.jat.2018.05.003 – ident: 9834_CR21 – volume: 108 start-page: 296 year: 2018 ident: 9834_CR48 publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.08.019 – volume: 38 start-page: 716 issue: 8 year: 1952 ident: 9834_CR7 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.38.8.716 – ident: 9834_CR46 – volume: 8 start-page: 164 issue: 1 year: 1996 ident: 9834_CR40 publication-title: Neural Comput. doi: 10.1162/neco.1996.8.1.164 – ident: 9834_CR15 doi: 10.1007/978-3-319-08159-5_2 – ident: 9834_CR25 – ident: 9834_CR42 |
SSID | ssj0009675 |
Score | 2.4371018 |
Snippet | We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Approximation Artificial neural networks Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Initial conditions Mathematical analysis Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Neural networks Transport equations Visualization |
Title | Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs |
URI | https://link.springer.com/article/10.1007/s10444-020-09834-7 https://www.proquest.com/docview/2482945491 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fT8IwEMcvAi_64A_UiCLpg2-6hG1duz4CgkSFByMJ-rJsXZeYKCjDRP9778YGatTEp2VZ12TX2_q99e5TgJNQEcRca6sZa2lxyqPxpSIWoYpd4Yc4R9D_jsFQ9Ef8cuyN86KwtMh2L5Yksy_1p2I3zrlF4U5T-S63ZAkqHsXu6MUjp7VC7YoMr4u-piyMBvy8VObnPr5ORyuN-W1ZNJttetuwmctE1lqM6w6smUkVtnLJyPIXMq3CxmCJXU134b6bASFwHmEZK_ztYVGYyKYJW_oYnRDw-4n20tKMZGY4Y_MCcs7My4L-nbLond2Y6xE7Hw7TPRj1uredvpVvnmBpV7hztLijBQZ_2reNiI2UXuIkKIYiVFiSR1qakEfCJMJ4yo1EjNLA9hLNI1R4ihhT-1CeTCfmABhGz8rGCNwj-lvox37sGeyWlgBDGblODezChoHOyeK0wcVjsGIik90DtHuQ2T2QNThd3vO84Gr82bpeDE2Qv2Np4HDfURwf0a7BWTFcq8u_93b4v-ZHsO5QIkuWql2H8nz2ao5RicyjBlRavXZ7SMeLu6tuA0od0Wlk7vgBwqDVnQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMcPnQ_qgz-m4nRqHnzTwtqmSfMoczJ124NsMHwpbZqCoJuuFfS_964_Nhwq-FiaBHpJuO81d58AnIeKIOZaW61YS4tTHo0vFbEIVewKP0QfQf87-gPRHfG7sTcuMTlUC7N0fk8lbpxzi4KclvJdbslVWOMYKVP6Xlu0F4BdkUN1cYUpC2MAvyyQ-XmM705ooSyXDkNzH3OzA1ulOGRXxWzuwoqZ1GG7FIqs3IZpHTb7c9hqugePnRwDgd6D5YTwj6eiHJFNEzZfWfRAmO8XukFLMxKX4YxlFdqcmbeC-Z2y6JM9mN6IXQ8G6T6MbjrDdtcqr0ywtCvcDO3saIEhn_ZtI2IjpZc4CUqgCHWV5JGWJuSRMIkwnnIjEaMgsL1E8wh1nSKy1AHUJtOJOQSGMbOyMe72iPkW-rEfewaHpYO_UEau0wC7smGgS544XWvxHCxIyGT3AO0e5HYPZAMu5n1eC5rGn62b1dQE5c5KA4f7juL4iXYDLqvpWrz-fbSj_zU_g_XusN8LereD-2PYcCiVJU_WbkItm72bE9QiWXSaL8Iv5qDQgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMcPf4Dogz-m4vyZB9-0bG3TpHmUuTF1GyIOhi-lTVMQdJtrBf3vvaTtqqKCj6VpIJeEfK939wnAaSg0xFxKqxlLblGdR-NzoVmEInaZH-IZof939AesO6TXI2_0qYrfZLuXIcm8pkFTmsZZYxonjU-Fb5RSS7s-TeG71OKLsIyeignUtlirwu4yg9rFdScs9Az8omzm5z6-Hk2V3vwWIjUnT2cT1gvJSC7yOd6CBTWuwUYhH0mxOdMarPXnCNZ0Gx7aBg6BYyKGG_72mBcpkklC5utNP2j497O-V0sSLTnDGclK4DlRLzkJPCXRO7lTvSG5HAzSHRh22vetrlVcpGBJl7kZWt-RDB1B6duKxYpzL3ESFEYRqi1OI8lVSCOmEqY84UYsRplge4mkEao9oXlTu7A0nozVHhD0pIWN3rinSXChH_uxp7BbHQ4MeeQ6dbBLGwayoIzryy6egoqPrO0eoN0DY_eA1-Fs_s00Z2z82fqwnJqg2G9p4FDfERSHaNfhvJyu6vXvve3_r_kJrNxedoLe1eDmAFYdnd9iMrgPYSmbvaojFChZdGzW4AcUlNjJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+approximation+of+solutions+of+parametric+linear+transport+equations+by+ReLU+DNNs&rft.jtitle=Advances+in+computational+mathematics&rft.au=Laakmann%2C+Fabian&rft.au=Petersen%2C+Philipp&rft.date=2021-02-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=47&rft.issue=1&rft_id=info:doi/10.1007%2Fs10444-020-09834-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_020_09834_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |