Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs

We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 47; no. 1
Main Authors Laakmann, Fabian, Petersen, Philipp
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1019-7168
1572-9044
DOI10.1007/s10444-020-09834-7

Cover

Loading…
Abstract We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation of these functions suffers from a curse of dimension. We demonstrate that through their inherent compositionality deep neural networks can resolve the characteristic flow underlying the transport equations and thereby allow approximation rates independent of the parameter dimension.
AbstractList We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation of these functions suffers from a curse of dimension. We demonstrate that through their inherent compositionality deep neural networks can resolve the characteristic flow underlying the transport equations and thereby allow approximation rates independent of the parameter dimension.
ArticleNumber 11
Author Petersen, Philipp
Laakmann, Fabian
Author_xml – sequence: 1
  givenname: Fabian
  surname: Laakmann
  fullname: Laakmann, Fabian
  organization: Mathematical Institute, University of Oxford
– sequence: 2
  givenname: Philipp
  orcidid: 0000-0003-3566-1020
  surname: Petersen
  fullname: Petersen, Philipp
  email: Philipp.Petersen@univie.ac.at
  organization: Institut für Mathematik, Universität Wien
BookMark eNp9kEtLAzEUhYMo2Fb_gKuA62iSyWOylFofUCqI3bgJmTSRKe1kmsyA_femHUFw0VVuuOe7954zBudNaBwANwTfEYzlfSKYMYYwxQirsmBInoER4ZIilRvnucZEIUlEeQnGKa0xxkpIPgKfM-9rW7umg6ZtY_iut6arQwODhyls-kOdDp_WRLN1Xawt3NSNMxF20TSpDbGDbtebQVjt4bubL-HjYpGuwIU3m-Suf98JWD7NPqYvaP72_Dp9mCNbiKJDpaRWcKZsSZxYOSm5p75QtOKESFZZ6QyrhPPCcVVUYoVLQri3rOKCK4JVMQG3w9x8_q53qdPr0Mcmr9SUlVSxPJxkFR1UNoaUovO6jdlr3GuC9SFDPWSoc4b6mKGWGSr_Qbbujlaz-XpzGi0GNOU9zZeLf1edoH4AHSSIRA
CitedBy_id crossref_primary_10_1186_s13662_023_03787_z
crossref_primary_10_1007_s00211_024_01428_5
crossref_primary_10_1016_j_camwa_2024_06_008
crossref_primary_10_1007_s00365_024_09694_0
crossref_primary_10_1090_mcom_3781
crossref_primary_10_1093_imanum_drab032
crossref_primary_10_1515_ijnsns_2021_0192
crossref_primary_10_1007_s11676_023_01652_z
crossref_primary_10_1002_gamm_202100006
crossref_primary_10_1090_mcom_3934
crossref_primary_10_1155_2021_8109496
crossref_primary_10_1016_j_advwatres_2021_104098
crossref_primary_10_1007_s00365_024_09699_9
crossref_primary_10_1007_s10208_022_09565_9
crossref_primary_10_1007_s10915_021_01532_w
crossref_primary_10_1093_imatrm_tnac001
crossref_primary_10_1007_s43670_022_00040_8
crossref_primary_10_1142_S0219530522500129
crossref_primary_10_1214_22_AAP1884
Cites_doi 10.1007/978-3-319-02090-7
10.1016/j.neunet.2017.07.002
10.1007/s10915-021-01462-7
10.1137/18M118709X
10.1090/gsm/019
10.1016/j.acha.2016.04.003
10.1007/s42985-019-0006-9
10.1016/j.jcp.2018.08.029
10.1109/18.256500
10.1090/mcom/3505
10.1016/j.jco.2008.11.002
10.1017/CBO9780511612374
10.1007/978-3-540-75914-0_1
10.1007/978-3-319-22470-1
10.1016/0893-6080(89)90020-8
10.1007/s11633-017-1054-2
10.1038/nature14539
10.1007/BF02551274
10.1016/j.cam.2018.02.023
10.1007/BF01393835
10.1137/1.9780898719222
10.1007/s40304-018-0127-z
10.1007/BF02070821
10.1051/m2an/2013103
10.1142/S0219530518500203
10.1007/978-1-4684-0059-5
10.1142/S021820251150014X
10.1186/2193-1801-3-230
10.1002/9783527617234
10.1016/j.jat.2018.05.003
10.1016/j.neunet.2018.08.019
10.1073/pnas.38.8.716
10.1162/neco.1996.8.1.164
10.1007/978-3-319-08159-5_2
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10444-020-09834-7
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_020_09834_7
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-872c6549c81e6de775f2f392b51174bc7ea4b6ef6e593b6d08115fc4b56591093
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Sun Jul 20 04:10:48 EDT 2025
Tue Jul 01 02:55:34 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Fri Feb 21 02:48:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 41A46
Deep neural networks
35Q49
41A25
Transport equations
68T05
35A35
Parametric PDEs
Approximation rates
Curse of dimension
65N30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-872c6549c81e6de775f2f392b51174bc7ea4b6ef6e593b6d08115fc4b56591093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3566-1020
OpenAccessLink https://link.springer.com/10.1007/s10444-020-09834-7
PQID 2482945491
PQPubID 2043875
ParticipantIDs proquest_journals_2482945491
crossref_primary_10_1007_s10444_020_09834_7
crossref_citationtrail_10_1007_s10444_020_09834_7
springer_journals_10_1007_s10444_020_09834_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Opschoor, J.A.A., Schwab, C., Zech, J.: Exponential ReLU DNN expression of holomorphic maps in high dimension. Technical Report 2019-35, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2019)
DiPernaRJLionsPLOrdinary differential equations, transport theory and Sobolev spacesInvent. Math.1989983511547102230510.1007/BF01393835
BellmanROn the theory of dynamic programmingProc. Natl. Acad. Sci. U.S.A.19523887165085610.1073/pnas.38.8.716
Elbrächter, D., Grohs, P., Jentzen, A., Schwab, C.: DNN expression rate analysis of high-dimensional PDEs: application to option pricing. arXiv:1809.07669 (2018)
Allaire, G., Blanc, X., Després, B., Golse, F.: Transport et diffusion. Ecole Polytechnique (2019)
Evans, L.: Partial differential equations. American Mathematical Society (2010)
JohnFPartial differential equations1978USSpringer10.1007/978-1-4684-0059-5
PoggioTMhaskarHRosascoLMirandaBLiaoQWhy and when can deep-but not shallow-networks avoid the curse of dimensionality: a reviewInt. J. Autom. Comput.201714550351910.1007/s11633-017-1054-2
Dahmen, W., Huang, C., Kutyniok, G., Lim, W.-Q., Schwab, C., Welper, G.: Efficient resolution of anisotropic structures. In: Extraction of Quantifiable Information from Complex Systems, pp 25–51. Springer (2014)
HesthavenJSRozzaGStammBCertified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 5902016BerlinSpringer10.1007/978-3-319-22470-1
BarronARUniversal approximation bounds for superpositions of a sigmoidal functionIEEE Transactions on Information Theory1993393930945123772010.1109/18.256500
SirignanoJSpiliopoulosKDGM: a deep learning algorithm for solving partial differential equationsJ. Comput. Phys.201837513391364387458510.1016/j.jcp.2018.08.029
CybenkoGApproximation by superpositions of a sigmoidal functionMathematics of Control, Signals and Systems198924303314101567010.1007/BF02551274
Grella, K.: Sparse tensor approximation for radiative transport. PhD thesis, ETH Zurich (2013)
LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. arXiv:1511.02021 (2015)
EWYuBThe deep ritz method: a deep learning-based numerical algorithm for solving variational problemsCommunications in Mathematics and Statistics201861112376795810.1007/s40304-018-0127-z
He, J., Li, L., Xu, J., Zheng, C.: ReLU deep Neural Networks and Linear Finite Elements. arXiv:1807.03973 (2018)
Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows. Birkhäuser-Verlag (2005)
MhaskarHNNeural networks for optimal approximation of smooth and analytic functionsNeural Comput.19968116417710.1162/neco.1996.8.1.164
DahmenWKutyniokGLimW-QSchwabCWelperGAdaptive anisotropic Petrov–Galerkin methods for first order transport equationsJ. Comput. Appl. Math.2018340191220380779610.1016/j.cam.2018.02.023
F. Golse.: Distributions, analyse de Fourier, équations aux dérivées partielles. Ecole polytechnique (2012)
Hartman, P.: Ordinary differential equations. Society for Industrial and Applied Mathematics (2002)
HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal approximatorsNeural Networks19892535936610.1016/0893-6080(89)90020-8
Laakmann, F.: A theoretical analysis of high-dimensional parametric transport equations and neural networks. Project thesis, University of Oxford (2019)
Ambrosio, L.: Transport equation and cauchy problem for non-smooth vector fields. In: Calculus of Variations and Nonlinear Partial Differential Equations, pp 1–41. Springer, Berlin (2008)
Mouhot, C.: Hyperbolicity: scalar transport equations, wave equations. University of Cambridge. https://cmouhot.files.wordpress.com/1900/10/chapter41.pdf (2013)
YarotskyDError bounds for approximations with deep reLU networksNeural Netw.20179410311410.1016/j.neunet.2017.07.002
MhaskarHNApproximation properties of a multilayered feedforward artificial neural networkAdv. Comput. Math.1993116180123025110.1007/BF02070821
DahmenWPleskenCWelperGDouble greedy algorithms: reduced basis methods for transport dominated problemsESAIM: Mathematical Modelling and Numerical Analysis2014483623663317786010.1051/m2an/2013103
Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Applied Mathematics, 4. Gauthier-Villars, Editions Scientifiques et M’edicales Elsevie (2000)
Opschoor, J.A., Petersen, P., Schwab, C.: Deep ReLU networks and high-order finite element methods. Analysis and Applications (in Press)
Dahmen, W., Gruber, F., Mula, O.: An adaptive nested source term iteration for radiative transfer equations. Mathematics of Computation (2020)
Berner, J., Grohs, P., Jentzen, A.: Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. arXiv:1809.03062 (2018)
Horn, R.A., Johnson, C.R. (eds.): Matrix Analysis. Cambridge University Press, Cambridge (1985)
Beck, C., Jentzen, A., Kuckuck, B.: Full error analysis for the training of deep neural networks. arXiv:1910.00121 (2019)
Chen, M., Jiang, H., Liao, W., Zhao, T.: Efficient approximation of deep relu networks for functions on low dimensional manifolds. In: Advances in Neural Information Processing Systems, pp 8172–8182 (2019)
Suzuki, T.: Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality. arXiv:1810.08033 (2018)
CourantRHilbertDMethods of Mathematical Physics1989New YorkWiley10.1002/9783527617234
Schmidt-Hieber, J.: Deep ReLU network approximation of functions on a manifold. arXiv:1908.00695 (2019)
BölcskeiHGrohsPKutyniokGPetersenPOptimal approximation with sparsely connected deep neural networksSIAM Journal on Mathematics of Data Science201911845394969910.1137/18M118709X
QuarteroniARozzaGReduced Order Methods for Modeling and Computational Reduction, vol. 92014BerlinSpringer10.1007/978-3-319-02090-7
ObermeierAGrohsPOn the approximation of functions with line singularities by ridgeletsJournal of Approximation Theory20192373095386862610.1016/j.jat.2018.05.003
ShahamUCloningerACoifmanRRProvable approximation properties for deep neural networksAppl. Comput Harmon. Anal.2018443537557376885110.1016/j.acha.2016.04.003
PetersenPVoigtlaenderFOptimal approximation of piecewise smooth functions using deep reLU neural networksNeural Netw.201810829633010.1016/j.neunet.2018.08.019
Golse, F.: Lecture notes on mean field kinetic equations. https://www.cmls.polytechnique.fr/perso/golse/M2/PolyKinetic.pdf (2013)
Serre, D.: Systems of Conservation Laws 1. Cambridge University Press (1999)
Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks and parametric PDEs. arXiv:1904.00377(2019)
Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A.: A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. arXiv:1901.10854(2019)
Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and kolmogorov equations by means of deep learning. arXiv:1806.00421 (2018)
SchwabCZechJDeep learning in high dimension: neural network expression rates for generalized polynomial chaos expansions in UQAnal. Appl.201917011955389473210.1142/S0219530518500203
NovakEWoźniakowskiHApproximation of infinitely differentiable multivariate functions is intractableJ. Complex.2009254398404254203910.1016/j.jco.2008.11.002
GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009http://www.deeplearningbook.org
Montanelli, H., Yang, H., Du, Q.: Deep ReLU networks overcome the curse of dimensionality for bandlimited functions. arXiv:1903.00735 (2019)
Gühring, I., Kutyniok, G., Petersen, P.: Error bounds for approximations with deep ReLU neural networks in Ws,p norms. Analysis and Applications (in Press)
EggerHSchlottbomMA mixed variational framework for the radiative transfer equationMathematical Models and Methods in Applied Sciences201222031150014289045210.1142/S021820251150014X
Fresca, S., Dede, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. arXiv:2001.04001 (2020)
9834_CR15
9834_CR14
W Dahmen (9834_CR16) 2018; 340
HN Mhaskar (9834_CR40) 1996; 8
9834_CR51
9834_CR11
9834_CR56
9834_CR53
9834_CR10
AR Barron (9834_CR4) 1993; 39
A Obermeier (9834_CR44) 2019; 237
9834_CR46
9834_CR47
W Dahmen (9834_CR17) 2014; 48
C Schwab (9834_CR52) 2019; 17
HN Mhaskar (9834_CR39) 1993; 1
9834_CR1
H Bölcskei (9834_CR9) 2019; 1
9834_CR2
JS Hesthaven (9834_CR31) 2016
9834_CR3
9834_CR5
9834_CR6
9834_CR41
A Quarteroni (9834_CR50) 2014
9834_CR8
9834_CR45
9834_CR42
9834_CR37
9834_CR36
K Hornik (9834_CR33) 1989; 2
J Sirignano (9834_CR55) 2018; 375
I Goodfellow (9834_CR26) 2016
E Novak (9834_CR43) 2009; 25
9834_CR30
F John (9834_CR35) 1978
U Shaham (9834_CR54) 2018; 44
9834_CR34
H Egger (9834_CR20) 2012; 22
9834_CR32
D Yarotsky (9834_CR57) 2017; 94
RJ DiPerna (9834_CR18) 1989; 98
9834_CR27
9834_CR24
R Bellman (9834_CR7) 1952; 38
9834_CR25
Y LeCun (9834_CR38) 2015; 521
9834_CR28
G Cybenko (9834_CR13) 1989; 2
9834_CR29
P Petersen (9834_CR48) 2018; 108
R Courant (9834_CR12) 1989
W E (9834_CR19) 2018; 6
T Poggio (9834_CR49) 2017; 14
9834_CR22
9834_CR23
9834_CR21
References_xml – reference: Evans, L.: Partial differential equations. American Mathematical Society (2010)
– reference: Dahmen, W., Gruber, F., Mula, O.: An adaptive nested source term iteration for radiative transfer equations. Mathematics of Computation (2020)
– reference: He, J., Li, L., Xu, J., Zheng, C.: ReLU deep Neural Networks and Linear Finite Elements. arXiv:1807.03973 (2018)
– reference: SirignanoJSpiliopoulosKDGM: a deep learning algorithm for solving partial differential equationsJ. Comput. Phys.201837513391364387458510.1016/j.jcp.2018.08.029
– reference: EWYuBThe deep ritz method: a deep learning-based numerical algorithm for solving variational problemsCommunications in Mathematics and Statistics201861112376795810.1007/s40304-018-0127-z
– reference: Allaire, G., Blanc, X., Després, B., Golse, F.: Transport et diffusion. Ecole Polytechnique (2019)
– reference: GoodfellowIBengioYCourvilleADeep Learning2016CambridgeMIT Press1373.68009http://www.deeplearningbook.org
– reference: DahmenWPleskenCWelperGDouble greedy algorithms: reduced basis methods for transport dominated problemsESAIM: Mathematical Modelling and Numerical Analysis2014483623663317786010.1051/m2an/2013103
– reference: DiPernaRJLionsPLOrdinary differential equations, transport theory and Sobolev spacesInvent. Math.1989983511547102230510.1007/BF01393835
– reference: Serre, D.: Systems of Conservation Laws 1. Cambridge University Press (1999)
– reference: Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A.: A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. arXiv:1901.10854(2019)
– reference: Suzuki, T.: Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality. arXiv:1810.08033 (2018)
– reference: BarronARUniversal approximation bounds for superpositions of a sigmoidal functionIEEE Transactions on Information Theory1993393930945123772010.1109/18.256500
– reference: Opschoor, J.A.A., Schwab, C., Zech, J.: Exponential ReLU DNN expression of holomorphic maps in high dimension. Technical Report 2019-35, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2019)
– reference: Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and kolmogorov equations by means of deep learning. arXiv:1806.00421 (2018)
– reference: EggerHSchlottbomMA mixed variational framework for the radiative transfer equationMathematical Models and Methods in Applied Sciences201222031150014289045210.1142/S021820251150014X
– reference: Elbrächter, D., Grohs, P., Jentzen, A., Schwab, C.: DNN expression rate analysis of high-dimensional PDEs: application to option pricing. arXiv:1809.07669 (2018)
– reference: JohnFPartial differential equations1978USSpringer10.1007/978-1-4684-0059-5
– reference: YarotskyDError bounds for approximations with deep reLU networksNeural Netw.20179410311410.1016/j.neunet.2017.07.002
– reference: BölcskeiHGrohsPKutyniokGPetersenPOptimal approximation with sparsely connected deep neural networksSIAM Journal on Mathematics of Data Science201911845394969910.1137/18M118709X
– reference: Schmidt-Hieber, J.: Deep ReLU network approximation of functions on a manifold. arXiv:1908.00695 (2019)
– reference: Montanelli, H., Yang, H., Du, Q.: Deep ReLU networks overcome the curse of dimensionality for bandlimited functions. arXiv:1903.00735 (2019)
– reference: Kutyniok, G., Petersen, P., Raslan, M., Schneider, R.: A theoretical analysis of deep neural networks and parametric PDEs. arXiv:1904.00377(2019)
– reference: PoggioTMhaskarHRosascoLMirandaBLiaoQWhy and when can deep-but not shallow-networks avoid the curse of dimensionality: a reviewInt. J. Autom. Comput.201714550351910.1007/s11633-017-1054-2
– reference: Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows. Birkhäuser-Verlag (2005)
– reference: SchwabCZechJDeep learning in high dimension: neural network expression rates for generalized polynomial chaos expansions in UQAnal. Appl.201917011955389473210.1142/S0219530518500203
– reference: Laakmann, F.: A theoretical analysis of high-dimensional parametric transport equations and neural networks. Project thesis, University of Oxford (2019)
– reference: LeCunYBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
– reference: Grella, K.: Sparse tensor approximation for radiative transport. PhD thesis, ETH Zurich (2013)
– reference: NovakEWoźniakowskiHApproximation of infinitely differentiable multivariate functions is intractableJ. Complex.2009254398404254203910.1016/j.jco.2008.11.002
– reference: Hartman, P.: Ordinary differential equations. Society for Industrial and Applied Mathematics (2002)
– reference: Ohlberger, M., Rave, S.: Reduced basis methods: success, limitations and future challenges. arXiv:1511.02021 (2015)
– reference: Dahmen, W., Huang, C., Kutyniok, G., Lim, W.-Q., Schwab, C., Welper, G.: Efficient resolution of anisotropic structures. In: Extraction of Quantifiable Information from Complex Systems, pp 25–51. Springer (2014)
– reference: Gühring, I., Kutyniok, G., Petersen, P.: Error bounds for approximations with deep ReLU neural networks in Ws,p norms. Analysis and Applications (in Press)
– reference: QuarteroniARozzaGReduced Order Methods for Modeling and Computational Reduction, vol. 92014BerlinSpringer10.1007/978-3-319-02090-7
– reference: Ambrosio, L.: Transport equation and cauchy problem for non-smooth vector fields. In: Calculus of Variations and Nonlinear Partial Differential Equations, pp 1–41. Springer, Berlin (2008)
– reference: Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Applied Mathematics, 4. Gauthier-Villars, Editions Scientifiques et M’edicales Elsevie (2000)
– reference: , F. Golse.: Distributions, analyse de Fourier, équations aux dérivées partielles. Ecole polytechnique (2012)
– reference: PetersenPVoigtlaenderFOptimal approximation of piecewise smooth functions using deep reLU neural networksNeural Netw.201810829633010.1016/j.neunet.2018.08.019
– reference: Fresca, S., Dede, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. arXiv:2001.04001 (2020)
– reference: CybenkoGApproximation by superpositions of a sigmoidal functionMathematics of Control, Signals and Systems198924303314101567010.1007/BF02551274
– reference: HornikKStinchcombeMWhiteHMultilayer feedforward networks are universal approximatorsNeural Networks19892535936610.1016/0893-6080(89)90020-8
– reference: BellmanROn the theory of dynamic programmingProc. Natl. Acad. Sci. U.S.A.19523887165085610.1073/pnas.38.8.716
– reference: Opschoor, J.A., Petersen, P., Schwab, C.: Deep ReLU networks and high-order finite element methods. Analysis and Applications (in Press)
– reference: ObermeierAGrohsPOn the approximation of functions with line singularities by ridgeletsJournal of Approximation Theory20192373095386862610.1016/j.jat.2018.05.003
– reference: Golse, F.: Lecture notes on mean field kinetic equations. https://www.cmls.polytechnique.fr/perso/golse/M2/PolyKinetic.pdf (2013)
– reference: Chen, M., Jiang, H., Liao, W., Zhao, T.: Efficient approximation of deep relu networks for functions on low dimensional manifolds. In: Advances in Neural Information Processing Systems, pp 8172–8182 (2019)
– reference: CourantRHilbertDMethods of Mathematical Physics1989New YorkWiley10.1002/9783527617234
– reference: Beck, C., Jentzen, A., Kuckuck, B.: Full error analysis for the training of deep neural networks. arXiv:1910.00121 (2019)
– reference: Horn, R.A., Johnson, C.R. (eds.): Matrix Analysis. Cambridge University Press, Cambridge (1985)
– reference: Berner, J., Grohs, P., Jentzen, A.: Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. arXiv:1809.03062 (2018)
– reference: MhaskarHNApproximation properties of a multilayered feedforward artificial neural networkAdv. Comput. Math.1993116180123025110.1007/BF02070821
– reference: MhaskarHNNeural networks for optimal approximation of smooth and analytic functionsNeural Comput.19968116417710.1162/neco.1996.8.1.164
– reference: HesthavenJSRozzaGStammBCertified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 5902016BerlinSpringer10.1007/978-3-319-22470-1
– reference: ShahamUCloningerACoifmanRRProvable approximation properties for deep neural networksAppl. Comput Harmon. Anal.2018443537557376885110.1016/j.acha.2016.04.003
– reference: Mouhot, C.: Hyperbolicity: scalar transport equations, wave equations. University of Cambridge. https://cmouhot.files.wordpress.com/1900/10/chapter41.pdf (2013)
– reference: DahmenWKutyniokGLimW-QSchwabCWelperGAdaptive anisotropic Petrov–Galerkin methods for first order transport equationsJ. Comput. Appl. Math.2018340191220380779610.1016/j.cam.2018.02.023
– volume-title: Reduced Order Methods for Modeling and Computational Reduction, vol. 9
  year: 2014
  ident: 9834_CR50
  doi: 10.1007/978-3-319-02090-7
– ident: 9834_CR6
– volume: 94
  start-page: 103
  year: 2017
  ident: 9834_CR57
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.002
– ident: 9834_CR45
– ident: 9834_CR23
  doi: 10.1007/s10915-021-01462-7
– volume: 1
  start-page: 8
  issue: 1
  year: 2019
  ident: 9834_CR9
  publication-title: SIAM Journal on Mathematics of Data Science
  doi: 10.1137/18M118709X
– ident: 9834_CR22
  doi: 10.1090/gsm/019
– ident: 9834_CR41
– ident: 9834_CR5
– volume: 44
  start-page: 537
  issue: 3
  year: 2018
  ident: 9834_CR54
  publication-title: Appl. Comput Harmon. Anal.
  doi: 10.1016/j.acha.2016.04.003
– ident: 9834_CR34
  doi: 10.1007/s42985-019-0006-9
– volume: 375
  start-page: 1339
  year: 2018
  ident: 9834_CR55
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– ident: 9834_CR51
– volume: 39
  start-page: 930
  issue: 3
  year: 1993
  ident: 9834_CR4
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.256500
– ident: 9834_CR14
  doi: 10.1090/mcom/3505
– ident: 9834_CR1
– ident: 9834_CR30
– volume: 25
  start-page: 398
  issue: 4
  year: 2009
  ident: 9834_CR43
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2008.11.002
– ident: 9834_CR53
  doi: 10.1017/CBO9780511612374
– ident: 9834_CR2
  doi: 10.1007/978-3-540-75914-0_1
– volume-title: Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 590
  year: 2016
  ident: 9834_CR31
  doi: 10.1007/978-3-319-22470-1
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 9834_CR33
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– ident: 9834_CR10
– volume: 14
  start-page: 503
  issue: 5
  year: 2017
  ident: 9834_CR49
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-017-1054-2
– ident: 9834_CR56
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 9834_CR38
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 9834_CR13
  publication-title: Mathematics of Control, Signals and Systems
  doi: 10.1007/BF02551274
– ident: 9834_CR8
– ident: 9834_CR37
– volume-title: Deep Learning
  year: 2016
  ident: 9834_CR26
– ident: 9834_CR47
– volume: 340
  start-page: 191
  year: 2018
  ident: 9834_CR16
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.02.023
– volume: 98
  start-page: 511
  issue: 3
  year: 1989
  ident: 9834_CR18
  publication-title: Invent. Math.
  doi: 10.1007/BF01393835
– ident: 9834_CR29
  doi: 10.1137/1.9780898719222
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 9834_CR19
  publication-title: Communications in Mathematics and Statistics
  doi: 10.1007/s40304-018-0127-z
– ident: 9834_CR28
– volume: 1
  start-page: 61
  issue: 1
  year: 1993
  ident: 9834_CR39
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02070821
– ident: 9834_CR24
– volume: 48
  start-page: 623
  issue: 3
  year: 2014
  ident: 9834_CR17
  publication-title: ESAIM: Mathematical Modelling and Numerical Analysis
  doi: 10.1051/m2an/2013103
– volume: 17
  start-page: 19
  issue: 01
  year: 2019
  ident: 9834_CR52
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530518500203
– volume-title: Partial differential equations
  year: 1978
  ident: 9834_CR35
  doi: 10.1007/978-1-4684-0059-5
– volume: 22
  start-page: 1150014
  issue: 03
  year: 2012
  ident: 9834_CR20
  publication-title: Mathematical Models and Methods in Applied Sciences
  doi: 10.1142/S021820251150014X
– ident: 9834_CR27
  doi: 10.1186/2193-1801-3-230
– volume-title: Methods of Mathematical Physics
  year: 1989
  ident: 9834_CR12
  doi: 10.1002/9783527617234
– ident: 9834_CR36
– ident: 9834_CR3
– ident: 9834_CR11
– ident: 9834_CR32
– volume: 237
  start-page: 30
  year: 2019
  ident: 9834_CR44
  publication-title: Journal of Approximation Theory
  doi: 10.1016/j.jat.2018.05.003
– ident: 9834_CR21
– volume: 108
  start-page: 296
  year: 2018
  ident: 9834_CR48
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.08.019
– volume: 38
  start-page: 716
  issue: 8
  year: 1952
  ident: 9834_CR7
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.38.8.716
– ident: 9834_CR46
– volume: 8
  start-page: 164
  issue: 1
  year: 1996
  ident: 9834_CR40
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.1.164
– ident: 9834_CR15
  doi: 10.1007/978-3-319-08159-5_2
– ident: 9834_CR25
– ident: 9834_CR42
SSID ssj0009675
Score 2.4371018
Snippet We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Approximation
Artificial neural networks
Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Initial conditions
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Neural networks
Transport equations
Visualization
Title Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs
URI https://link.springer.com/article/10.1007/s10444-020-09834-7
https://www.proquest.com/docview/2482945491
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fT8IwEMcvAi_64A_UiCLpg2-6hG1duz4CgkSFByMJ-rJsXZeYKCjDRP9778YGatTEp2VZ12TX2_q99e5TgJNQEcRca6sZa2lxyqPxpSIWoYpd4Yc4R9D_jsFQ9Ef8cuyN86KwtMh2L5Yksy_1p2I3zrlF4U5T-S63ZAkqHsXu6MUjp7VC7YoMr4u-piyMBvy8VObnPr5ORyuN-W1ZNJttetuwmctE1lqM6w6smUkVtnLJyPIXMq3CxmCJXU134b6bASFwHmEZK_ztYVGYyKYJW_oYnRDw-4n20tKMZGY4Y_MCcs7My4L-nbLond2Y6xE7Hw7TPRj1uredvpVvnmBpV7hztLijBQZ_2reNiI2UXuIkKIYiVFiSR1qakEfCJMJ4yo1EjNLA9hLNI1R4ihhT-1CeTCfmABhGz8rGCNwj-lvox37sGeyWlgBDGblODezChoHOyeK0wcVjsGIik90DtHuQ2T2QNThd3vO84Gr82bpeDE2Qv2Np4HDfURwf0a7BWTFcq8u_93b4v-ZHsO5QIkuWql2H8nz2ao5RicyjBlRavXZ7SMeLu6tuA0od0Wlk7vgBwqDVnQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMcPnQ_qgz-m4nRqHnzTwtqmSfMoczJ124NsMHwpbZqCoJuuFfS_964_Nhwq-FiaBHpJuO81d58AnIeKIOZaW61YS4tTHo0vFbEIVewKP0QfQf87-gPRHfG7sTcuMTlUC7N0fk8lbpxzi4KclvJdbslVWOMYKVP6Xlu0F4BdkUN1cYUpC2MAvyyQ-XmM705ooSyXDkNzH3OzA1ulOGRXxWzuwoqZ1GG7FIqs3IZpHTb7c9hqugePnRwDgd6D5YTwj6eiHJFNEzZfWfRAmO8XukFLMxKX4YxlFdqcmbeC-Z2y6JM9mN6IXQ8G6T6MbjrDdtcqr0ywtCvcDO3saIEhn_ZtI2IjpZc4CUqgCHWV5JGWJuSRMIkwnnIjEaMgsL1E8wh1nSKy1AHUJtOJOQSGMbOyMe72iPkW-rEfewaHpYO_UEau0wC7smGgS544XWvxHCxIyGT3AO0e5HYPZAMu5n1eC5rGn62b1dQE5c5KA4f7juL4iXYDLqvpWrz-fbSj_zU_g_XusN8LereD-2PYcCiVJU_WbkItm72bE9QiWXSaL8Iv5qDQgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS8MwEMcPf4Dogz-m4vyZB9-0bG3TpHmUuTF1GyIOhi-lTVMQdJtrBf3vvaTtqqKCj6VpIJeEfK939wnAaSg0xFxKqxlLblGdR-NzoVmEInaZH-IZof939AesO6TXI2_0qYrfZLuXIcm8pkFTmsZZYxonjU-Fb5RSS7s-TeG71OKLsIyeignUtlirwu4yg9rFdScs9Az8omzm5z6-Hk2V3vwWIjUnT2cT1gvJSC7yOd6CBTWuwUYhH0mxOdMarPXnCNZ0Gx7aBg6BYyKGG_72mBcpkklC5utNP2j497O-V0sSLTnDGclK4DlRLzkJPCXRO7lTvSG5HAzSHRh22vetrlVcpGBJl7kZWt-RDB1B6duKxYpzL3ESFEYRqi1OI8lVSCOmEqY84UYsRplge4mkEao9oXlTu7A0nozVHhD0pIWN3rinSXChH_uxp7BbHQ4MeeQ6dbBLGwayoIzryy6egoqPrO0eoN0DY_eA1-Fs_s00Z2z82fqwnJqg2G9p4FDfERSHaNfhvJyu6vXvve3_r_kJrNxedoLe1eDmAFYdnd9iMrgPYSmbvaojFChZdGzW4AcUlNjJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+approximation+of+solutions+of+parametric+linear+transport+equations+by+ReLU+DNNs&rft.jtitle=Advances+in+computational+mathematics&rft.au=Laakmann%2C+Fabian&rft.au=Petersen%2C+Philipp&rft.date=2021-02-01&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=47&rft.issue=1&rft_id=info:doi/10.1007%2Fs10444-020-09834-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_020_09834_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon