Efficient approximation of solutions of parametric linear transport equations by ReLU DNNs

We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 47; no. 1
Main Authors Laakmann, Fabian, Petersen, Philipp
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate that deep neural networks with the ReLU activation function can efficiently approximate the solutions of various types of parametric linear transport equations. For non-smooth initial conditions, the solutions of these PDEs are high-dimensional and non-smooth. Therefore, approximation of these functions suffers from a curse of dimension. We demonstrate that through their inherent compositionality deep neural networks can resolve the characteristic flow underlying the transport equations and thereby allow approximation rates independent of the parameter dimension.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-020-09834-7