Electrochemical and X-ray photoelectron spectroscopic investigations of conductive polymers

We report the synthesis of high soluble poly(aniline-co-o-hydroxyaniline) copolymers with varying the amount of o-hydroxyaniline (20, 40, 60, and 80 %) and referred as PA-co-o-HA20, PA-co-o-HA40, PA-co-o-HA60, and PA-co-o-HA80 respectively. The chemical and structural composition of the polymers and...

Full description

Saved in:
Bibliographic Details
Published inIonics Vol. 26; no. 2; pp. 831 - 838
Main Authors Waware, Umesh Somaji, Arukula, Ravi, Hamouda, A. M. S., Kasak, Peter
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report the synthesis of high soluble poly(aniline-co-o-hydroxyaniline) copolymers with varying the amount of o-hydroxyaniline (20, 40, 60, and 80 %) and referred as PA-co-o-HA20, PA-co-o-HA40, PA-co-o-HA60, and PA-co-o-HA80 respectively. The chemical and structural composition of the polymers and copolymers were determined by XPS, UV–Vis, and FE-SEM analysis. Electrochemical studies of the as-prepared polymers showed two single-electron oxidations and two single-electron reductions reversibly at various scan rates ranging from 20 to 50 mV and results reveals that the current density of the copolymer was lesser than the conventional polyaniline (PA). This is due to increasing the hydroxyl (-OH) branching on the polymer backbone in the polymer chain. The current density decreases from PA-co-o-HA20 to PA-co-o-HA80 by increasing the weight percentage of o-hydroxyaniline in the polymeric backbone.
ISSN:0947-7047
1862-0760
DOI:10.1007/s11581-019-03250-8