Vehicle Detection Techniques for Collision Avoidance Systems: A Review
Over the past decade, vision-based vehicle detection techniques for road safety improvement have gained an increasing amount of attention. Unfortunately, the techniques suffer from robustness due to huge variability in vehicle shape (particularly for motorcycles), cluttered environment, various illu...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 16; no. 5; pp. 2318 - 2338 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Over the past decade, vision-based vehicle detection techniques for road safety improvement have gained an increasing amount of attention. Unfortunately, the techniques suffer from robustness due to huge variability in vehicle shape (particularly for motorcycles), cluttered environment, various illumination conditions, and driving behavior. In this paper, we provide a comprehensive survey in a systematic approach about the state-of-the-art on-road vision-based vehicle detection and tracking systems for collision avoidance systems (CASs). This paper is structured based on a vehicle detection processes starting from sensor selection to vehicle detection and tracking. Techniques in each process/step are reviewed and analyzed individually. Two main contributions in this paper are the following: survey on motorcycle detection techniques and the sensor comparison in terms of cost and range parameters. Finally, the survey provides an optimal choice with a low cost and reliable CAS design in vehicle industries. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2015.2409109 |