Indium doped zinc oxide thin films deposited by ultrasonic spray pyrolysis technique: Effect of the substrate temperature on the physical properties
Indium doped zinc oxide (ZnO:In) thin solid films were deposited on soda-lime glass substrates by the ultrasonic spray pyrolysis technique. The effect of the substrate temperature on the electrical, morphology, and optical characteristics of ZnO:In thin films was studied. It was found that, as the s...
Saved in:
Published in | Materials science in semiconductor processing Vol. 14; no. 2; pp. 114 - 119 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.06.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Indium doped zinc oxide (ZnO:In) thin solid films were deposited on soda-lime glass substrates by the ultrasonic spray pyrolysis technique. The effect of the substrate temperature on the electrical, morphology, and optical characteristics of ZnO:In thin films was studied. It was found that, as the substrate temperature increases, the electrical resistivity decreases, reaching a minimum value in the order of 7.3×10
−3
Ω
cm, at 415
°C. Further increase in the substrate temperature results on an increment on the electrical resistivity of the thin solid films. All the samples were polycrystalline with a well-defined wurtzite structure. The preferred growth shows a switching from a random orientation at low substrates temperatures to (0
0
2) in the case of films deposited at the highest substrate temperature used. As the substrate temperature increases, the corresponding surface morphology changes from an almost faceted pyramidal to round-shaped form. The optical transmittance of the films in a interval of 400 to 700 nm is around 70%, with a band gap value in the order of 3.45
eV. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1369-8001 1873-4081 |
DOI: | 10.1016/j.mssp.2011.01.013 |