Neural network crossover in genetic algorithms using genetic programming

The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with gradient descent as a mutation operator. However, crossover operators are often omitted from such GAs as they are seen as being highly destructive a...

Full description

Saved in:
Bibliographic Details
Published inGenetic programming and evolvable machines Vol. 25; no. 1
Main Authors Pretorius, Kyle, Pillay, Nelishia
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1389-2576
1573-7632
DOI10.1007/s10710-024-09481-7

Cover

Loading…
Abstract The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with gradient descent as a mutation operator. However, crossover operators are often omitted from such GAs as they are seen as being highly destructive and detrimental to the performance of the GA. Designing crossover operators that can effectively be applied to NNs has been an active area of research with success limited to specific problem domains. The focus of this study is to use genetic programming (GP) to automatically evolve crossover operators that can be applied to NN weights and used in GAs. A novel GP is proposed and used to evolve both reusable and disposable crossover operators to compare their efficiency. Experiments are conducted to compare the performance of GAs using no crossover operator or a commonly used human designed crossover operator to GAs using GP evolved crossover operators. Results from experiments conducted show that using GP to evolve disposable crossover operators leads to highly effectively crossover operators that significantly improve the results obtained from the GA.
AbstractList The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with gradient descent as a mutation operator. However, crossover operators are often omitted from such GAs as they are seen as being highly destructive and detrimental to the performance of the GA. Designing crossover operators that can effectively be applied to NNs has been an active area of research with success limited to specific problem domains. The focus of this study is to use genetic programming (GP) to automatically evolve crossover operators that can be applied to NN weights and used in GAs. A novel GP is proposed and used to evolve both reusable and disposable crossover operators to compare their efficiency. Experiments are conducted to compare the performance of GAs using no crossover operator or a commonly used human designed crossover operator to GAs using GP evolved crossover operators. Results from experiments conducted show that using GP to evolve disposable crossover operators leads to highly effectively crossover operators that significantly improve the results obtained from the GA.
ArticleNumber 7
Author Pretorius, Kyle
Pillay, Nelishia
Author_xml – sequence: 1
  givenname: Kyle
  surname: Pretorius
  fullname: Pretorius, Kyle
  email: u16234805@tuks.co.za
  organization: Department of Computer Science, University of Pretoria
– sequence: 2
  givenname: Nelishia
  surname: Pillay
  fullname: Pillay, Nelishia
  organization: Department of Computer Science, University of Pretoria
BookMark eNp9kE1PwyAcxomZidv0C3hq4hnlpYVyNIs6k0UveiaU0spsYUKr8duLq9HEwy5AHp7f_-VZgJnzzgBwjtElRohfRYw4RhCRHCKRlxjyIzDHBaeQM0pm6U1LAUnB2QlYxLhFCDNSiDlYP5gxqC5zZvjw4TXTwcfo303IrMtak2SrM9W1PtjhpY_ZGK1rfz92wbdB9X3STsFxo7pozn7uJXi-vXlareHm8e5-db2BmjI6QF5iVKF01rXgJtc5wdoUhOgSN4VApKZVqSud5wXDVc0aJSrcaGGErjWrC0WX4GKqm3q_jSYOcuvH4FJLSQQRomBC4OQqJ9d-n2Aaqe2gBuvdEJTtJEbyOzc55SZTbnKfm-QJJf_QXbC9Cp-HITpBMZlda8LfVAeoL4L2gzA
CitedBy_id crossref_primary_10_3390_su17020497
crossref_primary_10_4018_IJSIR_370397
crossref_primary_10_15507_2658_4123_034_202404_597_614
crossref_primary_10_35596_1729_7648_2024_30_3_80_88
crossref_primary_10_3390_s24227359
crossref_primary_10_35164_0554_2901_2024_05_26_29
crossref_primary_10_2478_amns_2024_2796
crossref_primary_10_1016_j_egyr_2025_02_007
Cites_doi 10.1007/BF00175355
10.1016/S0096-3003(97)10005-4
10.1162/artl.2009.15.2.15202
10.1109/72.265960
10.1109/5.784219
10.1038/scientificamerican0792-66
10.1162/106365602320169811
10.1016/j.compag.2020.105507
10.1007/978-3-031-02056-8_19
10.1145/1569901.1570010
10.1109/CVPR.2016.90
10.1145/3205455.3205476
10.1145/3377930.3390197
10.1609/aaai.v33i01.33014780
10.1109/CVPR.2018.00474
10.1109/IJCNN48605.2020.9206951
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10710-024-09481-7
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7632
ExternalDocumentID 10_1007_s10710_024_09481_7
GrantInformation_xml – fundername: Multichoice Research Chair in Machine Learning
– fundername: University of Pretoria
– fundername: National Research Foundation of South Africa
  grantid: 138150
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9O
PF0
PT4
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-7810b0781dd97e4c421ce522c81f5902d3b8cbc44561bd6fa9b1fc9e9cdc6d5a3
IEDL.DBID U2A
ISSN 1389-2576
IngestDate Fri Jul 25 23:35:26 EDT 2025
Tue Jul 01 02:49:26 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Fri Feb 21 02:40:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Evolutionary algorithms
Neural networks
Crossover operator
Genetic programming
Genetic algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-7810b0781dd97e4c421ce522c81f5902d3b8cbc44561bd6fa9b1fc9e9cdc6d5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10710-024-09481-7
PQID 2929956991
PQPubID 2043861
ParticipantIDs proquest_journals_2929956991
crossref_citationtrail_10_1007_s10710_024_09481_7
crossref_primary_10_1007_s10710_024_09481_7
springer_journals_10_1007_s10710_024_09481_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Genetic programming and evolvable machines
PublicationTitleAbbrev Genet Program Evolvable Mach
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Angeline, Saunders, Pollack (CR2) 1994; 5
Yao (CR1) 1999; 87
CR19
CR18
Stanley, D’Ambrosio, Gauci (CR17) 2009; 15
CR16
CR14
CR12
CR34
CR11
CR33
Holland (CR7) 1992; 267
CR32
CR31
CR30
Zhou, Muise, Hu, Medvet, Pappa, Xue (CR5) 2022
CR4
CR3
Koklu, Ozkan (CR29) 2020; 174
CR8
CR28
CR9
CR27
CR26
CR25
CR24
CR23
CR22
Stanley, Miikkulainen (CR15) 2002; 10
CR21
CR20
Angeline, Saunders, Pollack (CR13) 1994; 5
Koza (CR10) 1994; 4
Yao, Liu (CR6) 1998; 91
PJ Angeline (9481_CR13) 1994; 5
9481_CR28
KO Stanley (9481_CR15) 2002; 10
9481_CR16
9481_CR14
9481_CR11
9481_CR33
9481_CR12
9481_CR34
9481_CR31
9481_CR32
X Yao (9481_CR6) 1998; 91
9481_CR30
X Yao (9481_CR1) 1999; 87
M Koklu (9481_CR29) 2020; 174
KO Stanley (9481_CR17) 2009; 15
9481_CR9
9481_CR8
9481_CR3
9481_CR19
9481_CR4
9481_CR18
9481_CR26
JH Holland (9481_CR7) 1992; 267
9481_CR27
9481_CR24
9481_CR25
9481_CR22
9481_CR23
JR Koza (9481_CR10) 1994; 4
9481_CR20
9481_CR21
R Zhou (9481_CR5) 2022
PJ Angeline (9481_CR2) 1994; 5
References_xml – ident: CR22
– ident: CR18
– volume: 4
  start-page: 87
  issue: 2
  year: 1994
  end-page: 112
  ident: CR10
  article-title: Genetic programming as a means for programming computers by natural selection
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– volume: 91
  start-page: 83
  issue: 1
  year: 1998
  end-page: 90
  ident: CR6
  article-title: Towards designing artificial neural networks by evolution
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(97)10005-4
– ident: CR4
– ident: CR14
– ident: CR16
– ident: CR12
– ident: CR30
– volume: 15
  start-page: 185
  issue: 2
  year: 2009
  end-page: 212
  ident: CR17
  article-title: A hypercube-based encoding for evolving large-scale neural networks
  publication-title: Artif. Life
  doi: 10.1162/artl.2009.15.2.15202
– ident: CR33
– ident: CR8
– ident: CR25
– ident: CR27
– volume: 5
  start-page: 54
  issue: 1
  year: 1994
  end-page: 65
  ident: CR2
  article-title: An evolutionary algorithm that constructs recurrent neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.265960
– ident: CR23
– volume: 5
  start-page: 54
  issue: 1
  year: 1994
  end-page: 65
  ident: CR13
  article-title: An evolutionary algorithm that constructs recurrent neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.265960
– ident: CR21
– ident: CR19
– volume: 87
  start-page: 1423
  issue: 9
  year: 1999
  end-page: 1447
  ident: CR1
  article-title: Evolving artificial neural networks
  publication-title: Proc. IEEE
  doi: 10.1109/5.784219
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  end-page: 73
  ident: CR7
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– ident: CR3
– ident: CR31
– ident: CR11
– ident: CR9
– ident: CR32
– ident: CR34
– volume: 10
  start-page: 99
  issue: 2
  year: 2002
  end-page: 127
  ident: CR15
  article-title: Evolving neural networks through augmenting topologies
  publication-title: Evol. Comput.
  doi: 10.1162/106365602320169811
– ident: CR28
– volume: 174
  start-page: 105507
  year: 2020
  ident: CR29
  article-title: Multiclass classification of dry beans using computer vision and machine learning techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105507
– start-page: 294
  year: 2022
  end-page: 308
  ident: CR5
  article-title: Permutation-invariant representation of neural networks with neuron embeddings
  publication-title: Genetic programming
  doi: 10.1007/978-3-031-02056-8_19
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 9481_CR7
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– ident: 9481_CR14
– ident: 9481_CR12
– ident: 9481_CR18
– ident: 9481_CR31
– ident: 9481_CR3
  doi: 10.1145/1569901.1570010
– volume: 91
  start-page: 83
  issue: 1
  year: 1998
  ident: 9481_CR6
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(97)10005-4
– ident: 9481_CR33
– volume: 5
  start-page: 54
  issue: 1
  year: 1994
  ident: 9481_CR2
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.265960
– volume: 10
  start-page: 99
  issue: 2
  year: 2002
  ident: 9481_CR15
  publication-title: Evol. Comput.
  doi: 10.1162/106365602320169811
– ident: 9481_CR25
– volume: 5
  start-page: 54
  issue: 1
  year: 1994
  ident: 9481_CR13
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.265960
– ident: 9481_CR23
– ident: 9481_CR21
– ident: 9481_CR20
  doi: 10.1109/CVPR.2016.90
– ident: 9481_CR4
– volume: 87
  start-page: 1423
  issue: 9
  year: 1999
  ident: 9481_CR1
  publication-title: Proc. IEEE
  doi: 10.1109/5.784219
– ident: 9481_CR32
– ident: 9481_CR30
– ident: 9481_CR16
  doi: 10.1145/3205455.3205476
– ident: 9481_CR34
– volume: 4
  start-page: 87
  issue: 2
  year: 1994
  ident: 9481_CR10
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175355
– start-page: 294
  volume-title: Genetic programming
  year: 2022
  ident: 9481_CR5
  doi: 10.1007/978-3-031-02056-8_19
– ident: 9481_CR24
– volume: 15
  start-page: 185
  issue: 2
  year: 2009
  ident: 9481_CR17
  publication-title: Artif. Life
  doi: 10.1162/artl.2009.15.2.15202
– ident: 9481_CR9
  doi: 10.1145/3377930.3390197
– ident: 9481_CR11
  doi: 10.1609/aaai.v33i01.33014780
– ident: 9481_CR8
– ident: 9481_CR19
  doi: 10.1109/CVPR.2018.00474
– volume: 174
  start-page: 105507
  year: 2020
  ident: 9481_CR29
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105507
– ident: 9481_CR22
– ident: 9481_CR27
  doi: 10.1109/IJCNN48605.2020.9206951
– ident: 9481_CR26
– ident: 9481_CR28
SSID ssj0016259
Score 2.3923452
Snippet The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Artificial Intelligence
Biomedical Engineering and Bioengineering
Compilers
Computer Science
Electrical Engineering
Genetic algorithms
Interpreters
Neural networks
Operators
Programming Languages
Programming Techniques
Software Engineering/Programming and Operating Systems
Title Neural network crossover in genetic algorithms using genetic programming
URI https://link.springer.com/article/10.1007/s10710-024-09481-7
https://www.proquest.com/docview/2929956991
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXLz4NqJIevCmTdgH7e4RCEg0cpIET5u220USWAys_99O6YIaNfG0yfaxyXS687Uz8w3ADRdMRF4WUS24psYEKCqjwKOCKymMvjBtL_SfRmw4Dh8m7YlLCluX0e6lS9L-qT8lu3F03PohbSHFCOUVqLXx7G60eOx3tr4DRPT2mIXxOwZOu1SZn-f4ao52GPObW9Ram8ERHDiYSDqbdT2GPZ2fwGFZgoG4HXkKQyTXMB3zTTQ3sV_BqEwyy4nRDUxRJGI-Xa5mxetiTTDMfbptcMFZC_PuDMaD_nNvSF1xBKoCFhSUR15LIlNPmsZchyr0PaUNmFJG8kjJkgYyUlKFCJBkyjIRSy9TsY5VqljaFsE5VPNlri-A-F4WaLOUPFYyDLiQEYuzlpQGGsaYo1AHr5RRohxzOBawmCc7zmOUa2Lkmli5JrwOt9sxbxvejD97N0rRJ24PrRPfIDdzejMAtg535XLsmn-f7fJ_3a9g37cagVcrDagWq3d9bZBGIZtQ6wy63RE-718e-02o9FivadXtA8Q2zbI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzEY0AM3iLQ-lrRHNDEV2HbapN2iJE0H0tYhNv4_dpduYgIkro2TSo4jf47tLwC3QnEV-3nMrBKWoQswTMehz5QwWqG9cFte6Pf6PB1Gz6PWyNHkUC_MRv6eWtwEpWuDiDWJWISJbdiJMFKm8r02b68yBoTjy-CKqnYQRLsGmZ_X-O6E1shyIxla-pjOIew7cOg9LHfzCLZscQwH1cMLnjuHJ5ASpQYKFssabq_8C9Viem-FhxZBjYmemoxnGPm_TuceFbePVwOuJGuK305h2HkctFPmnkRgJuThgonYb2ri58myRNjIRIFvLEIog_omIpYs1LHRJiJYpDOeq0T7uUlsYjLDs5YKz6BWzAp7Dl7g56HFDRSJ0VEolI55kje1RkCYUGdCHfxKR9I4vnB6tmIi10zHpFeJepWlXqWow91qzvuSLeNP6UaleulOzlwGiNcwZkPYWof7ajvWw7-vdvE_8RvYTQe9ruw-9V8uYS8orYMuVxpQW3x82ivEGgt9XRrZF68_yJc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE-PFtxFF7cGbNrAP2t2jQQm-iAdJuDVtt6sksBBY_78zZRfQqInX7bSbzEzTbzozXwm5FIqryEsjZpWwDI4Aw3QUeEwJoxX4C7fuQv-5yzu98KHf7K908btq9zIlOe9pQJamLK9PkrS-0vgmMInrh6yBdCNMrJMNiFRcorbFW4s8AqJ7F3JhLQ9A66Jt5uc1vh5NS7z5LUXqTp72LtkuICO9mdt4j6zZbJ_slM8x0GJ3HpAOEm2AYDav7KbuL1ihSQcZBT_BdkWqhm_j6SB_H80olry_LQaKQq0RfDskvfbda6vDiocSmAl4kDMReQ2NrD1JEgsbmtD3jAVgZcAKSM-SBDoy2oQIlnTCUxVrLzWxjU1ieNJUwRGpZOPMHhPqe2lgwawiNjoMhNIRj9OG1gATY-xXqBKv1JE0BYs4PmYxlEv-Y9SrBL1Kp1cpquRqMWcy59D4U7pWql4W-2kmfUBxEMkBmK2S69Icy-HfVzv5n_gF2Xy5bcun--7jKdnynXPgjUuNVPLphz0DAJLrc-djn-VH0N4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+crossover+in+genetic+algorithms+using+genetic+programming&rft.jtitle=Genetic+programming+and+evolvable+machines&rft.au=Pretorius%2C+Kyle&rft.au=Pillay%2C+Nelishia&rft.date=2024-06-01&rft.pub=Springer+US&rft.issn=1389-2576&rft.eissn=1573-7632&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1007%2Fs10710-024-09481-7&rft.externalDocID=10_1007_s10710_024_09481_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2576&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2576&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2576&client=summon