Neural network crossover in genetic algorithms using genetic programming
The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with gradient descent as a mutation operator. However, crossover operators are often omitted from such GAs as they are seen as being highly destructive a...
Saved in:
Published in | Genetic programming and evolvable machines Vol. 25; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1389-2576 1573-7632 |
DOI | 10.1007/s10710-024-09481-7 |
Cover
Loading…
Abstract | The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with gradient descent as a mutation operator. However, crossover operators are often omitted from such GAs as they are seen as being highly destructive and detrimental to the performance of the GA. Designing crossover operators that can effectively be applied to NNs has been an active area of research with success limited to specific problem domains. The focus of this study is to use genetic programming (GP) to automatically evolve crossover operators that can be applied to NN weights and used in GAs. A novel GP is proposed and used to evolve both reusable and disposable crossover operators to compare their efficiency. Experiments are conducted to compare the performance of GAs using no crossover operator or a commonly used human designed crossover operator to GAs using GP evolved crossover operators. Results from experiments conducted show that using GP to evolve disposable crossover operators leads to highly effectively crossover operators that significantly improve the results obtained from the GA. |
---|---|
AbstractList | The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with gradient descent as a mutation operator. However, crossover operators are often omitted from such GAs as they are seen as being highly destructive and detrimental to the performance of the GA. Designing crossover operators that can effectively be applied to NNs has been an active area of research with success limited to specific problem domains. The focus of this study is to use genetic programming (GP) to automatically evolve crossover operators that can be applied to NN weights and used in GAs. A novel GP is proposed and used to evolve both reusable and disposable crossover operators to compare their efficiency. Experiments are conducted to compare the performance of GAs using no crossover operator or a commonly used human designed crossover operator to GAs using GP evolved crossover operators. Results from experiments conducted show that using GP to evolve disposable crossover operators leads to highly effectively crossover operators that significantly improve the results obtained from the GA. |
ArticleNumber | 7 |
Author | Pretorius, Kyle Pillay, Nelishia |
Author_xml | – sequence: 1 givenname: Kyle surname: Pretorius fullname: Pretorius, Kyle email: u16234805@tuks.co.za organization: Department of Computer Science, University of Pretoria – sequence: 2 givenname: Nelishia surname: Pillay fullname: Pillay, Nelishia organization: Department of Computer Science, University of Pretoria |
BookMark | eNp9kE1PwyAcxomZidv0C3hq4hnlpYVyNIs6k0UveiaU0spsYUKr8duLq9HEwy5AHp7f_-VZgJnzzgBwjtElRohfRYw4RhCRHCKRlxjyIzDHBaeQM0pm6U1LAUnB2QlYxLhFCDNSiDlYP5gxqC5zZvjw4TXTwcfo303IrMtak2SrM9W1PtjhpY_ZGK1rfz92wbdB9X3STsFxo7pozn7uJXi-vXlareHm8e5-db2BmjI6QF5iVKF01rXgJtc5wdoUhOgSN4VApKZVqSud5wXDVc0aJSrcaGGErjWrC0WX4GKqm3q_jSYOcuvH4FJLSQQRomBC4OQqJ9d-n2Aaqe2gBuvdEJTtJEbyOzc55SZTbnKfm-QJJf_QXbC9Cp-HITpBMZlda8LfVAeoL4L2gzA |
CitedBy_id | crossref_primary_10_3390_su17020497 crossref_primary_10_4018_IJSIR_370397 crossref_primary_10_15507_2658_4123_034_202404_597_614 crossref_primary_10_35596_1729_7648_2024_30_3_80_88 crossref_primary_10_3390_s24227359 crossref_primary_10_35164_0554_2901_2024_05_26_29 crossref_primary_10_2478_amns_2024_2796 crossref_primary_10_1016_j_egyr_2025_02_007 |
Cites_doi | 10.1007/BF00175355 10.1016/S0096-3003(97)10005-4 10.1162/artl.2009.15.2.15202 10.1109/72.265960 10.1109/5.784219 10.1038/scientificamerican0792-66 10.1162/106365602320169811 10.1016/j.compag.2020.105507 10.1007/978-3-031-02056-8_19 10.1145/1569901.1570010 10.1109/CVPR.2016.90 10.1145/3205455.3205476 10.1145/3377930.3390197 10.1609/aaai.v33i01.33014780 10.1109/CVPR.2018.00474 10.1109/IJCNN48605.2020.9206951 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10710-024-09481-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7632 |
ExternalDocumentID | 10_1007_s10710_024_09481_7 |
GrantInformation_xml | – fundername: Multichoice Research Chair in Machine Learning – fundername: University of Pretoria – fundername: National Research Foundation of South Africa grantid: 138150 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9O PF0 PT4 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-7810b0781dd97e4c421ce522c81f5902d3b8cbc44561bd6fa9b1fc9e9cdc6d5a3 |
IEDL.DBID | U2A |
ISSN | 1389-2576 |
IngestDate | Fri Jul 25 23:35:26 EDT 2025 Tue Jul 01 02:49:26 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Fri Feb 21 02:40:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Evolutionary algorithms Neural networks Crossover operator Genetic programming Genetic algorithms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-7810b0781dd97e4c421ce522c81f5902d3b8cbc44561bd6fa9b1fc9e9cdc6d5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s10710-024-09481-7 |
PQID | 2929956991 |
PQPubID | 2043861 |
ParticipantIDs | proquest_journals_2929956991 crossref_citationtrail_10_1007_s10710_024_09481_7 crossref_primary_10_1007_s10710_024_09481_7 springer_journals_10_1007_s10710_024_09481_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Genetic programming and evolvable machines |
PublicationTitleAbbrev | Genet Program Evolvable Mach |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Angeline, Saunders, Pollack (CR2) 1994; 5 Yao (CR1) 1999; 87 CR19 CR18 Stanley, D’Ambrosio, Gauci (CR17) 2009; 15 CR16 CR14 CR12 CR34 CR11 CR33 Holland (CR7) 1992; 267 CR32 CR31 CR30 Zhou, Muise, Hu, Medvet, Pappa, Xue (CR5) 2022 CR4 CR3 Koklu, Ozkan (CR29) 2020; 174 CR8 CR28 CR9 CR27 CR26 CR25 CR24 CR23 CR22 Stanley, Miikkulainen (CR15) 2002; 10 CR21 CR20 Angeline, Saunders, Pollack (CR13) 1994; 5 Koza (CR10) 1994; 4 Yao, Liu (CR6) 1998; 91 PJ Angeline (9481_CR13) 1994; 5 9481_CR28 KO Stanley (9481_CR15) 2002; 10 9481_CR16 9481_CR14 9481_CR11 9481_CR33 9481_CR12 9481_CR34 9481_CR31 9481_CR32 X Yao (9481_CR6) 1998; 91 9481_CR30 X Yao (9481_CR1) 1999; 87 M Koklu (9481_CR29) 2020; 174 KO Stanley (9481_CR17) 2009; 15 9481_CR9 9481_CR8 9481_CR3 9481_CR19 9481_CR4 9481_CR18 9481_CR26 JH Holland (9481_CR7) 1992; 267 9481_CR27 9481_CR24 9481_CR25 9481_CR22 9481_CR23 JR Koza (9481_CR10) 1994; 4 9481_CR20 9481_CR21 R Zhou (9481_CR5) 2022 PJ Angeline (9481_CR2) 1994; 5 |
References_xml | – ident: CR22 – ident: CR18 – volume: 4 start-page: 87 issue: 2 year: 1994 end-page: 112 ident: CR10 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat. Comput. doi: 10.1007/BF00175355 – volume: 91 start-page: 83 issue: 1 year: 1998 end-page: 90 ident: CR6 article-title: Towards designing artificial neural networks by evolution publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(97)10005-4 – ident: CR4 – ident: CR14 – ident: CR16 – ident: CR12 – ident: CR30 – volume: 15 start-page: 185 issue: 2 year: 2009 end-page: 212 ident: CR17 article-title: A hypercube-based encoding for evolving large-scale neural networks publication-title: Artif. Life doi: 10.1162/artl.2009.15.2.15202 – ident: CR33 – ident: CR8 – ident: CR25 – ident: CR27 – volume: 5 start-page: 54 issue: 1 year: 1994 end-page: 65 ident: CR2 article-title: An evolutionary algorithm that constructs recurrent neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.265960 – ident: CR23 – volume: 5 start-page: 54 issue: 1 year: 1994 end-page: 65 ident: CR13 article-title: An evolutionary algorithm that constructs recurrent neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.265960 – ident: CR21 – ident: CR19 – volume: 87 start-page: 1423 issue: 9 year: 1999 end-page: 1447 ident: CR1 article-title: Evolving artificial neural networks publication-title: Proc. IEEE doi: 10.1109/5.784219 – volume: 267 start-page: 66 issue: 1 year: 1992 end-page: 73 ident: CR7 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – ident: CR3 – ident: CR31 – ident: CR11 – ident: CR9 – ident: CR32 – ident: CR34 – volume: 10 start-page: 99 issue: 2 year: 2002 end-page: 127 ident: CR15 article-title: Evolving neural networks through augmenting topologies publication-title: Evol. Comput. doi: 10.1162/106365602320169811 – ident: CR28 – volume: 174 start-page: 105507 year: 2020 ident: CR29 article-title: Multiclass classification of dry beans using computer vision and machine learning techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105507 – start-page: 294 year: 2022 end-page: 308 ident: CR5 article-title: Permutation-invariant representation of neural networks with neuron embeddings publication-title: Genetic programming doi: 10.1007/978-3-031-02056-8_19 – ident: CR26 – ident: CR24 – ident: CR20 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 9481_CR7 publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – ident: 9481_CR14 – ident: 9481_CR12 – ident: 9481_CR18 – ident: 9481_CR31 – ident: 9481_CR3 doi: 10.1145/1569901.1570010 – volume: 91 start-page: 83 issue: 1 year: 1998 ident: 9481_CR6 publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(97)10005-4 – ident: 9481_CR33 – volume: 5 start-page: 54 issue: 1 year: 1994 ident: 9481_CR2 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.265960 – volume: 10 start-page: 99 issue: 2 year: 2002 ident: 9481_CR15 publication-title: Evol. Comput. doi: 10.1162/106365602320169811 – ident: 9481_CR25 – volume: 5 start-page: 54 issue: 1 year: 1994 ident: 9481_CR13 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.265960 – ident: 9481_CR23 – ident: 9481_CR21 – ident: 9481_CR20 doi: 10.1109/CVPR.2016.90 – ident: 9481_CR4 – volume: 87 start-page: 1423 issue: 9 year: 1999 ident: 9481_CR1 publication-title: Proc. IEEE doi: 10.1109/5.784219 – ident: 9481_CR32 – ident: 9481_CR30 – ident: 9481_CR16 doi: 10.1145/3205455.3205476 – ident: 9481_CR34 – volume: 4 start-page: 87 issue: 2 year: 1994 ident: 9481_CR10 publication-title: Stat. Comput. doi: 10.1007/BF00175355 – start-page: 294 volume-title: Genetic programming year: 2022 ident: 9481_CR5 doi: 10.1007/978-3-031-02056-8_19 – ident: 9481_CR24 – volume: 15 start-page: 185 issue: 2 year: 2009 ident: 9481_CR17 publication-title: Artif. Life doi: 10.1162/artl.2009.15.2.15202 – ident: 9481_CR9 doi: 10.1145/3377930.3390197 – ident: 9481_CR11 doi: 10.1609/aaai.v33i01.33014780 – ident: 9481_CR8 – ident: 9481_CR19 doi: 10.1109/CVPR.2018.00474 – volume: 174 start-page: 105507 year: 2020 ident: 9481_CR29 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105507 – ident: 9481_CR22 – ident: 9481_CR27 doi: 10.1109/IJCNN48605.2020.9206951 – ident: 9481_CR26 – ident: 9481_CR28 |
SSID | ssj0016259 |
Score | 2.3923452 |
Snippet | The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Artificial Intelligence Biomedical Engineering and Bioengineering Compilers Computer Science Electrical Engineering Genetic algorithms Interpreters Neural networks Operators Programming Languages Programming Techniques Software Engineering/Programming and Operating Systems |
Title | Neural network crossover in genetic algorithms using genetic programming |
URI | https://link.springer.com/article/10.1007/s10710-024-09481-7 https://www.proquest.com/docview/2929956991 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4IXLz4NqJIevCmTdgH7e4RCEg0cpIET5u220USWAys_99O6YIaNfG0yfaxyXS687Uz8w3ADRdMRF4WUS24psYEKCqjwKOCKymMvjBtL_SfRmw4Dh8m7YlLCluX0e6lS9L-qT8lu3F03PohbSHFCOUVqLXx7G60eOx3tr4DRPT2mIXxOwZOu1SZn-f4ao52GPObW9Ram8ERHDiYSDqbdT2GPZ2fwGFZgoG4HXkKQyTXMB3zTTQ3sV_BqEwyy4nRDUxRJGI-Xa5mxetiTTDMfbptcMFZC_PuDMaD_nNvSF1xBKoCFhSUR15LIlNPmsZchyr0PaUNmFJG8kjJkgYyUlKFCJBkyjIRSy9TsY5VqljaFsE5VPNlri-A-F4WaLOUPFYyDLiQEYuzlpQGGsaYo1AHr5RRohxzOBawmCc7zmOUa2Lkmli5JrwOt9sxbxvejD97N0rRJ24PrRPfIDdzejMAtg535XLsmn-f7fJ_3a9g37cagVcrDagWq3d9bZBGIZtQ6wy63RE-718e-02o9FivadXtA8Q2zbI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzEY0AM3iLQ-lrRHNDEV2HbapN2iJE0H0tYhNv4_dpduYgIkro2TSo4jf47tLwC3QnEV-3nMrBKWoQswTMehz5QwWqG9cFte6Pf6PB1Gz6PWyNHkUC_MRv6eWtwEpWuDiDWJWISJbdiJMFKm8r02b68yBoTjy-CKqnYQRLsGmZ_X-O6E1shyIxla-pjOIew7cOg9LHfzCLZscQwH1cMLnjuHJ5ASpQYKFssabq_8C9Viem-FhxZBjYmemoxnGPm_TuceFbePVwOuJGuK305h2HkctFPmnkRgJuThgonYb2ri58myRNjIRIFvLEIog_omIpYs1LHRJiJYpDOeq0T7uUlsYjLDs5YKz6BWzAp7Dl7g56HFDRSJ0VEolI55kje1RkCYUGdCHfxKR9I4vnB6tmIi10zHpFeJepWlXqWow91qzvuSLeNP6UaleulOzlwGiNcwZkPYWof7ajvWw7-vdvE_8RvYTQe9ruw-9V8uYS8orYMuVxpQW3x82ivEGgt9XRrZF68_yJc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UE-PFtxFF7cGbNrAP2t2jQQm-iAdJuDVtt6sksBBY_78zZRfQqInX7bSbzEzTbzozXwm5FIqryEsjZpWwDI4Aw3QUeEwJoxX4C7fuQv-5yzu98KHf7K908btq9zIlOe9pQJamLK9PkrS-0vgmMInrh6yBdCNMrJMNiFRcorbFW4s8AqJ7F3JhLQ9A66Jt5uc1vh5NS7z5LUXqTp72LtkuICO9mdt4j6zZbJ_slM8x0GJ3HpAOEm2AYDav7KbuL1ihSQcZBT_BdkWqhm_j6SB_H80olry_LQaKQq0RfDskvfbda6vDiocSmAl4kDMReQ2NrD1JEgsbmtD3jAVgZcAKSM-SBDoy2oQIlnTCUxVrLzWxjU1ieNJUwRGpZOPMHhPqe2lgwawiNjoMhNIRj9OG1gATY-xXqBKv1JE0BYs4PmYxlEv-Y9SrBL1Kp1cpquRqMWcy59D4U7pWql4W-2kmfUBxEMkBmK2S69Icy-HfVzv5n_gF2Xy5bcun--7jKdnynXPgjUuNVPLphz0DAJLrc-djn-VH0N4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+crossover+in+genetic+algorithms+using+genetic+programming&rft.jtitle=Genetic+programming+and+evolvable+machines&rft.au=Pretorius%2C+Kyle&rft.au=Pillay%2C+Nelishia&rft.date=2024-06-01&rft.pub=Springer+US&rft.issn=1389-2576&rft.eissn=1573-7632&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1007%2Fs10710-024-09481-7&rft.externalDocID=10_1007_s10710_024_09481_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2576&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2576&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2576&client=summon |