Neural network crossover in genetic algorithms using genetic programming

The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with gradient descent as a mutation operator. However, crossover operators are often omitted from such GAs as they are seen as being highly destructive a...

Full description

Saved in:
Bibliographic Details
Published inGenetic programming and evolvable machines Vol. 25; no. 1
Main Authors Pretorius, Kyle, Pillay, Nelishia
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The use of genetic algorithms (GAs) to evolve neural network (NN) weights has risen in popularity in recent years, particularly when used together with gradient descent as a mutation operator. However, crossover operators are often omitted from such GAs as they are seen as being highly destructive and detrimental to the performance of the GA. Designing crossover operators that can effectively be applied to NNs has been an active area of research with success limited to specific problem domains. The focus of this study is to use genetic programming (GP) to automatically evolve crossover operators that can be applied to NN weights and used in GAs. A novel GP is proposed and used to evolve both reusable and disposable crossover operators to compare their efficiency. Experiments are conducted to compare the performance of GAs using no crossover operator or a commonly used human designed crossover operator to GAs using GP evolved crossover operators. Results from experiments conducted show that using GP to evolve disposable crossover operators leads to highly effectively crossover operators that significantly improve the results obtained from the GA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1389-2576
1573-7632
DOI:10.1007/s10710-024-09481-7