Localize surface plasmon resonance of silver nanoparticles using Mie theory

In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs....

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 34; no. 32; p. 2128
Main Authors Alzoubi, F. Y., Ahmad, Ahmad A., Aljarrah, Ihsan A., Migdadi, A. B., Al-Bataineh, Qais M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with fcc structure with lattice constant a = 4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region.
AbstractList In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with fcc structure with lattice constant a= 4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region.
In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with fcc structure with lattice constant a = 4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region.
In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with fcc structure with lattice constant $$a=$$ a = 4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region.
ArticleNumber 2128
Author Alzoubi, F. Y.
Aljarrah, Ihsan A.
Migdadi, A. B.
Ahmad, Ahmad A.
Al-Bataineh, Qais M.
Author_xml – sequence: 1
  givenname: F. Y.
  surname: Alzoubi
  fullname: Alzoubi, F. Y.
  organization: Department of Physical Sciences, Jordan University of Science & Technology
– sequence: 2
  givenname: Ahmad A.
  surname: Ahmad
  fullname: Ahmad, Ahmad A.
  organization: Department of Physical Sciences, Jordan University of Science & Technology
– sequence: 3
  givenname: Ihsan A.
  surname: Aljarrah
  fullname: Aljarrah, Ihsan A.
  organization: Department of Physical Sciences, Jordan University of Science & Technology
– sequence: 4
  givenname: A. B.
  surname: Migdadi
  fullname: Migdadi, A. B.
  organization: Department of Physical Sciences, Jordan University of Science & Technology
– sequence: 5
  givenname: Qais M.
  orcidid: 0000-0003-2852-4781
  surname: Al-Bataineh
  fullname: Al-Bataineh, Qais M.
  email: qais.al-bataineh@isas.de
  organization: Leibniz Institut für Analytische Wissenschaften-ISAS-e.V, Experimental Physics, TU Dortmund University
BookMark eNp9kE9LAzEQxYMo2Fa_gKcFz6uTZHeTPUrxH1a8KHgLaTpbU7bJmmyl9dMbXUHw0NMww_vNe7wxOXTeISFnFC4ogLiMFGRZ5MB4TimHIt8ekBEtBc8LyV4PyQjqUuRFydgxGce4AoCq4HJEHmbe6NZ-YhY3odEGs67Vce1dFjB6p126-CaLtv3AkKXddzr01rQYs020bpk9Wsz6N_Rhd0KOGt1GPP2dE_Jyc_08vctnT7f306tZbnjF-7xCVmkQDMy8mOtFAwsEXnKNCILWc1qn_HzBKkk5T7F1hQ2Twgje1I0RFeMTcj787YJ_32Ds1cpvgkuWikkpBMiC86Rig8oEH2PARnXBrnXYKQrquzQ1lKZSaeqnNLVNkPwHGdvr3nrXB23b_Sgf0Jh83BLDX6o91Bep6oP0
CitedBy_id crossref_primary_10_1016_j_molliq_2024_124927
crossref_primary_10_1021_acsomega_4c07927
crossref_primary_10_1002_agt2_559
crossref_primary_10_1016_j_cej_2024_151788
crossref_primary_10_1016_j_molliq_2025_126966
crossref_primary_10_1016_j_indic_2024_100470
crossref_primary_10_23939_ictee2024_01_148
crossref_primary_10_1002_VIW_20240077
crossref_primary_10_1007_s11082_025_08059_6
crossref_primary_10_1016_j_hybadv_2025_100389
crossref_primary_10_1177_09592989241296432
crossref_primary_10_1088_2040_8986_ad5b74
crossref_primary_10_1016_j_jlumin_2024_120873
crossref_primary_10_1007_s11468_024_02751_1
crossref_primary_10_1016_j_optmat_2024_115679
crossref_primary_10_1007_s11468_024_02408_z
crossref_primary_10_55452_1998_6688_2024_21_4_210_218
crossref_primary_10_3389_fchem_2024_1432546
crossref_primary_10_59277_RomJPhys_2024_69_618
crossref_primary_10_1016_j_sna_2025_116249
crossref_primary_10_1016_j_ijhydene_2024_05_466
crossref_primary_10_1021_acsanm_4c06128
crossref_primary_10_1016_j_jddst_2024_106466
crossref_primary_10_1134_S1063783424600833
crossref_primary_10_1016_j_porgcoat_2025_109113
crossref_primary_10_1155_bca_2009069
crossref_primary_10_1016_j_cscee_2024_100811
crossref_primary_10_1088_1361_6455_ad6b68
crossref_primary_10_3390_ma18050940
crossref_primary_10_1007_s40735_024_00854_0
crossref_primary_10_3390_surfaces7030050
crossref_primary_10_1002_pssa_202400933
crossref_primary_10_1016_j_ijbiomac_2024_138236
crossref_primary_10_1088_2053_1591_ad48e2
crossref_primary_10_1016_j_kjs_2024_100201
crossref_primary_10_1007_s10854_024_13364_z
crossref_primary_10_1007_s10904_024_03552_z
crossref_primary_10_1016_j_jddst_2024_105732
Cites_doi 10.1007/s10646-008-0213-1
10.1016/j.jcis.2011.01.054
10.1016/j.apsadv.2021.100057
10.1016/j.rinp.2018.12.091
10.1063/1.1630351
10.1021/ja104532z
10.1063/1.5111820
10.1007/s00253-009-2159-5
10.2217/nnm.11.117
10.1007/s11468-009-9088-0
10.1016/j.molliq.2008.11.014
10.1016/j.carbon.2016.02.050
10.1364/OE.26.006439
10.1002/anie.200601277
10.1016/0039-6028(93)90370-Y
10.1289/ehp.7339
10.1002/9783527633135
10.1016/j.optlaseng.2018.09.013
10.1021/cm0615875
10.1557/mrs2005.99
10.1038/nbt927
10.1007/978-1-4419-1151-3
10.1007/s41204-022-00260-2
10.1021/la101768n
10.1039/C4AN00978A
10.1038/s41598-020-63066-9
10.1039/C6RA14173K
10.2147/IJN.S83953
10.1021/nl062795z
10.1007/s11468-020-01121-x
10.1021/acsami.9b14980
10.1364/OL.8.000581
10.1021/ja003055+
10.1021/cm201343k
10.1007/s003400100650
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-023-11304-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
ExternalDocumentID 10_1007_s10854_023_11304_x
GrantInformation_xml – fundername: Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. (3463)
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c363t-6e26a0720cb4badf0de0353aee0719b193043d268133095a6ef287c73f9fc7623
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Jul 25 11:04:55 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Tue Jul 01 01:57:02 EDT 2025
Fri Feb 21 02:44:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-6e26a0720cb4badf0de0353aee0719b193043d268133095a6ef287c73f9fc7623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2852-4781
OpenAccessLink https://link.springer.com/10.1007/s10854-023-11304-x
PQID 2887708433
PQPubID 326250
ParticipantIDs proquest_journals_2887708433
crossref_primary_10_1007_s10854_023_11304_x
crossref_citationtrail_10_1007_s10854_023_11304_x
springer_journals_10_1007_s10854_023_11304_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Movsesyan, Baudrion, Adam (CR14) 2018; 26
Cobley, Skrabalak, Campbell, Xia (CR17) 2009; 4
Mahmoud, El-Sayed (CR32) 2010; 132
Al-zou’by, Alzoubi, Migdadi, Al-Zboon (CR5) 2023; 8
Paramelle, Sadovoy, Gorelik, Free, Hobley, Fernig (CR12) 2014; 139
Song, Zhang, Sun, Ren, Yang, Wang (CR23) 2019; 9
Liu, Chen, Prasad, Swihart (CR22) 2011; 23
Quinten (CR20) 2011
Lu, Kobayashi, Tawa, Ozaki (CR24) 2006; 18
Sagle, Ruvuna, Ruemmele, Van Duyne (CR29) 2011; 6
Alivisatos (CR31) 2004; 22
Amirjani, Firouzi, Haghshenas (CR25) 2020; 15
Jing, Wang, Zhao, Wang (CR9) 2019; 112
Jackson (CR34) 1999
Manna, Scher, Alivisatos (CR4) 2000; 122
Semchuk, Biliuk, Havryliuk, Biliuk (CR8) 2021; 3
Oberdörster, Oberdörster, Oberdörster (CR2) 2005; 113
Loiseau (CR21) 2019; 11
Meier, Wokaun (CR35) 1983; 8
Singh, Jha, Srivastava, Sarkar, Gogoi (CR40) 2013; 2
Gurunathan, Park, Han, Kim (CR6) 2015; 10
Jana, Ganguly, Pal (CR11) 2016; 6
Cai, Shalaev (CR38) 2010
Kheirandish, Javan, Mohammadzadeh (CR19) 2020; 10
Ghaforyan, Ebrahimzadeh, Bilankohi (CR33) 2015; 5
Quinten (CR27) 2001; 73
Halas (CR28) 2005; 30
Saion, Gharibshahi (CR1) 2011; 7
Christian, Von der Kammer, Baalousha, Hofmann (CR3) 2008; 17
Li, Xie, Shi, Zeng, You-Sheng, Chen (CR7) 2010; 85
Chen, Munechika, Ginger (CR16) 2007; 7
Alzoubi (CR37) 2021; 6
Tang (CR30) 2011; 356
Li, Lenhart, Walker (CR26) 2010; 26
Bhui, Bar, Sarkar, Sahoo, De, Misra (CR39) 2009; 145
Keller, Xiao, Bozhevolnyi (CR10) 1993; 280
Tao, Sinsermsuksakul, Yang (CR18) 2006; 45
Lozovski, Lienau, Tarasov, Vasyliev, Zhuchenko (CR13) 2019; 12
Kuwata, Tamaru, Esumi, Miyano (CR36) 2003; 83
Gong, Zhang, Zhu, Wang, Zhang, Zhang (CR41) 2016; 102
Bohren, Huffman (CR15) 2008
OY Semchuk (11304_CR8) 2021; 3
LB Sagle (11304_CR29) 2011; 6
S Liu (11304_CR22) 2011; 23
E Saion (11304_CR1) 2011; 7
MA Mahmoud (11304_CR32) 2010; 132
O Keller (11304_CR10) 1993; 280
G Oberdörster (11304_CR2) 2005; 113
V Lozovski (11304_CR13) 2019; 12
M Meier (11304_CR35) 1983; 8
W-R Li (11304_CR7) 2010; 85
L Manna (11304_CR4) 2000; 122
S Gurunathan (11304_CR6) 2015; 10
A Kheirandish (11304_CR19) 2020; 10
M Quinten (11304_CR27) 2001; 73
A Tao (11304_CR18) 2006; 45
H Song (11304_CR23) 2019; 9
L Lu (11304_CR24) 2006; 18
JY Al-zou’by (11304_CR5) 2023; 8
F Alzoubi (11304_CR37) 2021; 6
A Amirjani (11304_CR25) 2020; 15
N Halas (11304_CR28) 2005; 30
DK Bhui (11304_CR39) 2009; 145
A Singh (11304_CR40) 2013; 2
D Paramelle (11304_CR12) 2014; 139
B Tang (11304_CR30) 2011; 356
P Alivisatos (11304_CR31) 2004; 22
Y Chen (11304_CR16) 2007; 7
CF Bohren (11304_CR15) 2008
J Jana (11304_CR11) 2016; 6
A Movsesyan (11304_CR14) 2018; 26
M Quinten (11304_CR20) 2011
H Kuwata (11304_CR36) 2003; 83
P Christian (11304_CR3) 2008; 17
J-Y Jing (11304_CR9) 2019; 112
A Loiseau (11304_CR21) 2019; 11
H Ghaforyan (11304_CR33) 2015; 5
W Cai (11304_CR38) 2010
X Li (11304_CR26) 2010; 26
T Gong (11304_CR41) 2016; 102
JD Jackson (11304_CR34) 1999
CM Cobley (11304_CR17) 2009; 4
References_xml – year: 2008
  ident: CR15
  publication-title: Absorption and scattering of light by small particles
– volume: 17
  start-page: 326
  issue: 5
  year: 2008
  end-page: 343
  ident: CR3
  article-title: Nanoparticles: structure, properties, preparation and behaviour in environmental media
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-008-0213-1
– volume: 6
  start-page: 1
  issue: 3
  year: 2021
  end-page: 9
  ident: CR37
  article-title: Physicochemical characteristics of silver nanoparticles: influence of carbonate alkalinity
  publication-title: Nanatechnol. Environ. Eng.
– volume: 356
  start-page: 513
  issue: 2
  year: 2011
  end-page: 518
  ident: CR30
  article-title: Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.01.054
– volume: 3
  start-page: 100057
  year: 2021
  ident: CR8
  article-title: Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance
  publication-title: Appl. Surf. Sci. Adv.
  doi: 10.1016/j.apsadv.2021.100057
– volume: 12
  start-page: 1197
  year: 2019
  end-page: 1201
  ident: CR13
  article-title: Configurational resonances in absorption of metal nanoparticles seeded onto a semiconductor surface
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.12.091
– volume: 83
  start-page: 4625
  issue: 22
  year: 2003
  end-page: 4627
  ident: CR36
  article-title: Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1630351
– volume: 2
  start-page: 153
  issue: 11
  year: 2013
  end-page: 157
  ident: CR40
  article-title: Silver nanoparticles as fluorescent probes: new approach for bioimaging
  publication-title: Int. J. Sci. Technol. Res.
– volume: 132
  start-page: 12704
  issue: 36
  year: 2010
  end-page: 12710
  ident: CR32
  article-title: Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104532z
– volume: 9
  start-page: 085307
  issue: 8
  year: 2019
  ident: CR23
  article-title: Triangular silver nanoparticle U-bent fiber sensor based on localized surface plasmon resonance
  publication-title: AIP Adv.
  doi: 10.1063/1.5111820
– volume: 85
  start-page: 1115
  issue: 4
  year: 2010
  end-page: 1122
  ident: CR7
  article-title: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2159-5
– volume: 6
  start-page: 1447
  issue: 8
  year: 2011
  end-page: 1462
  ident: CR29
  article-title: Advances in localized surface plasmon resonance spectroscopy biosensing
  publication-title: Nanomedicine
  doi: 10.2217/nnm.11.117
– volume: 4
  start-page: 171
  year: 2009
  end-page: 179
  ident: CR17
  article-title: Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications
  publication-title: Plasmonics
  doi: 10.1007/s11468-009-9088-0
– volume: 145
  start-page: 33
  issue: 1
  year: 2009
  end-page: 37
  ident: CR39
  article-title: Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution
  publication-title: J. Mol. Liq
  doi: 10.1016/j.molliq.2008.11.014
– volume: 102
  start-page: 245
  year: 2016
  end-page: 254
  ident: CR41
  article-title: Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.02.050
– volume: 26
  start-page: 6439
  issue: 5
  year: 2018
  end-page: 6445
  ident: CR14
  article-title: Extinction measurements of metallic nanoparticles arrays as a way to explore the single nanoparticle plasmon resonances
  publication-title: Opt. Express
  doi: 10.1364/OE.26.006439
– volume: 45
  start-page: 4597
  issue: 28
  year: 2006
  end-page: 4601
  ident: CR18
  article-title: Polyhedral silver nanocrystals with distinct scattering signatures
  publication-title: Angew Chem. Int. Ed.
  doi: 10.1002/anie.200601277
– volume: 280
  start-page: 217
  issue: 1–2
  year: 1993
  end-page: 230
  ident: CR10
  article-title: Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(93)90370-Y
– volume: 113
  start-page: 823
  issue: 7
  year: 2005
  end-page: 839
  ident: CR2
  article-title: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.7339
– volume: 7
  start-page: 6
  issue: 1
  year: 2011
  end-page: 11
  ident: CR1
  article-title: On the theory of metal nanoparticles based on quantum mechanical calculation
  publication-title: Malaysian J. Fundam. Appl. Sci.
– year: 2011
  ident: CR20
  publication-title: Optical Properties of Nanoparticle Systems
  doi: 10.1002/9783527633135
– volume: 112
  start-page: 103
  year: 2019
  end-page: 118
  ident: CR9
  article-title: Long-range surface plasmon resonance and its sensing applications: a review
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.09.013
– volume: 18
  start-page: 4894
  issue: 20
  year: 2006
  end-page: 4901
  ident: CR24
  article-title: Silver nanoplates with special shapes: controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties
  publication-title: Chem. Mater.
  doi: 10.1021/cm0615875
– volume: 30
  start-page: 362
  issue: 5
  year: 2005
  end-page: 367
  ident: CR28
  article-title: Playing with plasmons: tuning the optical resonant properties of metallic nanoshells
  publication-title: MRS Bull.
  doi: 10.1557/mrs2005.99
– volume: 22
  start-page: 47
  issue: 1
  year: 2004
  end-page: 52
  ident: CR31
  article-title: The use of nanocrystals in biological detection
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt927
– start-page: 6011
  year: 2010
  ident: CR38
  publication-title: Optical metamaterials
  doi: 10.1007/978-1-4419-1151-3
– volume: 8
  start-page: 119
  issue: 1
  year: 2023
  end-page: 129
  ident: CR5
  article-title: Evaluating the impacts of manufactured silver nanoparticles dispersed in various wastewaters on biochemical oxygen demand kinetics of the resulting wastewaters
  publication-title: Nanatechnol. Environ. Eng.
  doi: 10.1007/s41204-022-00260-2
– volume: 26
  start-page: 16690
  issue: 22
  year: 2010
  end-page: 16698
  ident: CR26
  article-title: Dissolution-accompanied aggregation kinetics of silver nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la101768n
– year: 1999
  ident: CR34
  publication-title: Classical Electrodynamics
– volume: 139
  start-page: 4855
  issue: 19
  year: 2014
  end-page: 4861
  ident: CR12
  article-title: A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV–Visible light spectra
  publication-title: Analyst
  doi: 10.1039/C4AN00978A
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  ident: CR19
  article-title: Modified drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-63066-9
– volume: 5
  start-page: 79
  issue: 4
  year: 2015
  end-page: 82
  ident: CR33
  article-title: Study of the optical properties of nanoparticles using Mie theory
  publication-title: World Appl. Programm
– volume: 6
  start-page: 86174
  issue: 89
  year: 2016
  end-page: 86211
  ident: CR11
  article-title: Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application
  publication-title: RSC Adv.
  doi: 10.1039/C6RA14173K
– volume: 10
  start-page: 4203
  year: 2015
  end-page: 4223
  ident: CR6
  article-title: Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S83953
– volume: 7
  start-page: 690
  issue: 3
  year: 2007
  end-page: 696
  ident: CR16
  article-title: Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles
  publication-title: Nano Lett.
  doi: 10.1021/nl062795z
– volume: 15
  start-page: 1077
  year: 2020
  end-page: 1082
  ident: CR25
  article-title: Predicting the size of silver nanoparticles from their optical properties
  publication-title: Plasmonics
  doi: 10.1007/s11468-020-01121-x
– volume: 11
  start-page: 46462
  issue: 50
  year: 2019
  end-page: 46471
  ident: CR21
  article-title: Core–shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14980
– volume: 8
  start-page: 581
  issue: 11
  year: 1983
  end-page: 583
  ident: CR35
  article-title: Enhanced fields on large metal particles: dynamic depolarization
  publication-title: Opt. Lett.
  doi: 10.1364/OL.8.000581
– volume: 122
  start-page: 12700
  issue: 51
  year: 2000
  end-page: 12706
  ident: CR4
  article-title: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003055+
– volume: 23
  start-page: 4098
  issue: 18
  year: 2011
  end-page: 4101
  ident: CR22
  article-title: Synthesis of monodisperse au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency
  publication-title: Chem. Mater.
  doi: 10.1021/cm201343k
– volume: 73
  start-page: 245
  issue: 3
  year: 2001
  end-page: 255
  ident: CR27
  article-title: Local fields close to the surface of nanoparticles and aggregates of nanoparticles
  publication-title: Appl. Phys. B
  doi: 10.1007/s003400100650
– volume: 6
  start-page: 1
  issue: 3
  year: 2021
  ident: 11304_CR37
  publication-title: Nanatechnol. Environ. Eng.
– volume: 45
  start-page: 4597
  issue: 28
  year: 2006
  ident: 11304_CR18
  publication-title: Angew Chem. Int. Ed.
  doi: 10.1002/anie.200601277
– volume: 11
  start-page: 46462
  issue: 50
  year: 2019
  ident: 11304_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14980
– volume: 280
  start-page: 217
  issue: 1–2
  year: 1993
  ident: 11304_CR10
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(93)90370-Y
– volume: 6
  start-page: 1447
  issue: 8
  year: 2011
  ident: 11304_CR29
  publication-title: Nanomedicine
  doi: 10.2217/nnm.11.117
– volume: 22
  start-page: 47
  issue: 1
  year: 2004
  ident: 11304_CR31
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt927
– volume-title: Classical Electrodynamics
  year: 1999
  ident: 11304_CR34
– volume: 356
  start-page: 513
  issue: 2
  year: 2011
  ident: 11304_CR30
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.01.054
– volume: 23
  start-page: 4098
  issue: 18
  year: 2011
  ident: 11304_CR22
  publication-title: Chem. Mater.
  doi: 10.1021/cm201343k
– volume: 145
  start-page: 33
  issue: 1
  year: 2009
  ident: 11304_CR39
  publication-title: J. Mol. Liq
  doi: 10.1016/j.molliq.2008.11.014
– volume: 6
  start-page: 86174
  issue: 89
  year: 2016
  ident: 11304_CR11
  publication-title: RSC Adv.
  doi: 10.1039/C6RA14173K
– volume: 26
  start-page: 6439
  issue: 5
  year: 2018
  ident: 11304_CR14
  publication-title: Opt. Express
  doi: 10.1364/OE.26.006439
– volume: 17
  start-page: 326
  issue: 5
  year: 2008
  ident: 11304_CR3
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-008-0213-1
– volume: 85
  start-page: 1115
  issue: 4
  year: 2010
  ident: 11304_CR7
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2159-5
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 11304_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-63066-9
– volume: 10
  start-page: 4203
  year: 2015
  ident: 11304_CR6
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S83953
– volume: 9
  start-page: 085307
  issue: 8
  year: 2019
  ident: 11304_CR23
  publication-title: AIP Adv.
  doi: 10.1063/1.5111820
– volume: 83
  start-page: 4625
  issue: 22
  year: 2003
  ident: 11304_CR36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1630351
– volume: 12
  start-page: 1197
  year: 2019
  ident: 11304_CR13
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2018.12.091
– volume: 139
  start-page: 4855
  issue: 19
  year: 2014
  ident: 11304_CR12
  publication-title: Analyst
  doi: 10.1039/C4AN00978A
– volume: 3
  start-page: 100057
  year: 2021
  ident: 11304_CR8
  publication-title: Appl. Surf. Sci. Adv.
  doi: 10.1016/j.apsadv.2021.100057
– volume: 26
  start-page: 16690
  issue: 22
  year: 2010
  ident: 11304_CR26
  publication-title: Langmuir
  doi: 10.1021/la101768n
– volume: 113
  start-page: 823
  issue: 7
  year: 2005
  ident: 11304_CR2
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.7339
– volume: 112
  start-page: 103
  year: 2019
  ident: 11304_CR9
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.09.013
– volume: 4
  start-page: 171
  year: 2009
  ident: 11304_CR17
  publication-title: Plasmonics
  doi: 10.1007/s11468-009-9088-0
– volume: 102
  start-page: 245
  year: 2016
  ident: 11304_CR41
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.02.050
– volume: 5
  start-page: 79
  issue: 4
  year: 2015
  ident: 11304_CR33
  publication-title: World Appl. Programm
– volume: 2
  start-page: 153
  issue: 11
  year: 2013
  ident: 11304_CR40
  publication-title: Int. J. Sci. Technol. Res.
– volume: 7
  start-page: 690
  issue: 3
  year: 2007
  ident: 11304_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl062795z
– volume: 122
  start-page: 12700
  issue: 51
  year: 2000
  ident: 11304_CR4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja003055+
– volume-title: Optical Properties of Nanoparticle Systems
  year: 2011
  ident: 11304_CR20
  doi: 10.1002/9783527633135
– volume: 8
  start-page: 581
  issue: 11
  year: 1983
  ident: 11304_CR35
  publication-title: Opt. Lett.
  doi: 10.1364/OL.8.000581
– volume: 73
  start-page: 245
  issue: 3
  year: 2001
  ident: 11304_CR27
  publication-title: Appl. Phys. B
  doi: 10.1007/s003400100650
– volume-title: Absorption and scattering of light by small particles
  year: 2008
  ident: 11304_CR15
– volume: 30
  start-page: 362
  issue: 5
  year: 2005
  ident: 11304_CR28
  publication-title: MRS Bull.
  doi: 10.1557/mrs2005.99
– volume: 7
  start-page: 6
  issue: 1
  year: 2011
  ident: 11304_CR1
  publication-title: Malaysian J. Fundam. Appl. Sci.
– volume: 8
  start-page: 119
  issue: 1
  year: 2023
  ident: 11304_CR5
  publication-title: Nanatechnol. Environ. Eng.
  doi: 10.1007/s41204-022-00260-2
– volume: 15
  start-page: 1077
  year: 2020
  ident: 11304_CR25
  publication-title: Plasmonics
  doi: 10.1007/s11468-020-01121-x
– volume: 132
  start-page: 12704
  issue: 36
  year: 2010
  ident: 11304_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104532z
– start-page: 6011
  volume-title: Optical metamaterials
  year: 2010
  ident: 11304_CR38
  doi: 10.1007/978-1-4419-1151-3
– volume: 18
  start-page: 4894
  issue: 20
  year: 2006
  ident: 11304_CR24
  publication-title: Chem. Mater.
  doi: 10.1021/cm0615875
SSID ssj0006438
Score 2.606607
Snippet In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2128
SubjectTerms Absorption cross sections
Biosensors
Characterization and Evaluation of Materials
Chemical reduction
Chemistry and Materials Science
Cubic lattice
Lattice parameters
Materials Science
Mie scattering
Nanoparticles
Optical and Electronic Materials
Optical properties
Optoelectronic devices
Photovoltaic cells
Scattering cross sections
Silver
Solar cells
Surface plasmon resonance
Time domain analysis
Visible spectrum
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XfQg_sTplBy8abBt0rQ7icrGUDdEHOxWkjSRgWxz3WD61_vSpqsK7ljahvK95nvvJS_fQ-gCZgzlLcVIJCUnLDaWByPIeQSnQjJh_Lx_Sq_PuwP2MAyHbsEtc2WVJSfmRJ1OlF0jvw5gNkRezCi9mX4Q2zXK7q66FhqbqA4UHEPyVb9r959fVlwM_jYu1PasuncQuGMz7vBcHDICPov4QOSMLH-7pire_LNFmnuezi7acSEjvi1svIc29Hgfbf8QEjxAj0_WJY2-NM4WMyOUxlOIiuGTMWTTE6upofHE4Gxk66AxXEOq7CrisK18f8O9kcb5ocbPQzTotF_vu8S1SSCKcjonXAdcAL6ekkyK1Hip9mhIhdYQPrQkRGgeo2nAY0hHAQjBtQGoVERNyyjgQnqEauPJWB8jHEnb8kUKP1QpeLdYAi0ryjQXUkehEQ3klwglymmI21YW70mlfmxRTQDVJEc1WTbQ5eqdaaGgsfbpZgl84mZTllS2b6Cr0hjV7f9HO1k_2inaCgr7E89votp8ttBnEGPM5bn7kb4BThnNnA
  priority: 102
  providerName: ProQuest
Title Localize surface plasmon resonance of silver nanoparticles using Mie theory
URI https://link.springer.com/article/10.1007/s10854-023-11304-x
https://www.proquest.com/docview/2887708433
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrFaSw7eNLC7yWa3x1r7wD4QtVBPS5ImUpC2dFtQf72TfbRVVPAUlmRzmEy--YbMA6FLuDGUVxUjgZScsNBYHAzA5xGcCsmEcZP-Kb0-bw_Y3dAfZklhcR7tnj9JJki9kewW-oyAjSEuAC8jwByLvvXdQYsHXm2Fv2Bjw7TCnq3o7XlZqszPe3w1R2uO-e1ZNLE2zX20l9FEXEvP9QBt6ckh2t0oHniEOl1rhsYfGsfLuRFK4xkwYdAqDB701NbR0HhqcDy2sc8YvsE9zqLgsI12f8G9scZJIuP7MRo0G0_1NslaIxBFOV0Qrj0uQKaOkkyKkXFG2qE-FVoDZahKYGUOoyOPh-CCgiAE1wZcIxVQUzUK8I-eoMJkOtGnCAfStnmRwvXVCCxaKAGKFWWaC6kD34gScnMJRSqrG27bV7xG64rHVqoRSDVKpBq9ldDV6p9ZWjXjz9XlXPBRdoPiyAP0C5yQUVpC1_lhrKd_3-3sf8vP0Y6X6gNx3DIqLOZLfQE8YyEraDtstiqoWLvtdR_t2HruNGC8afTvH2C2zuuVRPU-AUTL0Aw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HIAD4ikGA3KAE0S0TZp2B4QQMAbbOIHErSRpgiahbbAhGD-K34jTBwMkuHGs2kaVY_uzG_szwA5aDBM1zWmklKA8ts4PRpjzSMGk4tL62fyU9pVo3PDL2_B2At7LXhhXVln6xMxRpz3t_pEfBGgNkRdzxo76j9RNjXKnq-UIjVwtmmb0ginb4PDiFPd3NwjqZ9cnDVpMFaCaCTakwgRC4ud4WnElU-ulxmMhk8Yg2tYUBjQeZ2kgYszeMP6QwljMKnTEbM1qdB0M152EafyQmrOouH7-6fkR3eOc289xiQdB0aRTtOrFIaeIkNRH2OD09TsQjqPbHweyGc7VF2C-CFDJca5RizBhuksw94W2cBmaLQeAnTdDBs9PVmpD-hiDo4AI5u49x-BhSM-SQcdVXRO8xsS8qL8jrs7-nrQ7hmQtlKMVuPkX8a3CVLfXNWtAIuUGzCjphzpFLI0VgoBm3AipTBRaWQG_lFCiC8ZyNzjjIRlzLTupJijVJJNq8lqBvc93-jlfx59PV0vBJ4XtDpKxplVgv9yM8e3fV1v_e7VtmGlct1tJ6-KquQGzQa4L1POrMDV8ejabGN0M1VamUgTu_luHPwCp4wgZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-VVprgAcEGWmGAH8YTWEtix0kf0DRoq239UIWotLdgOzaqhNrSD9Hxp_HXcU6cFpDWtz1GSazofHe_-8X3AXCKFsNES3OaKCUoT63zgwlyHimYVFzasJifMhiKyzG_volvavC7qoVxaZWVTywcdT7T7h_5WYTWkAQpZ-zM-rSIUbt7Pv9B3QQpd9JajdMoVaRnbn8ifVt-uGrjXr-Nom7ny6dL6icMUM0EW1FhIiHx0wKtuJK5DXITsJhJYxB5WwqDm4CzPBIpMjmMRaQwFhmGTphtWY1uhOG6D6CRICsK6tD42BmOPm9xALE-LTv9uc7iUeRLdnzhXhpzinhJQwQRTjf_wuIu1v3veLZAve4TeOzDVXJR6tdTqJnpITz6q4nhEfT6Dg4nvwxZrhdWakPmGJGjiAgy-Znr52HIzJLlxOVgE7xGmu6z8YjLuv9GBhNDioLK22cwvhcBPof6dDY1x0AS5cbNKBnGOkdkTRVCgmbcCKlMElvZhLCSUKZ9_3I3RuN7tuu87KSaoVSzQqrZpgnvtu_My-4de58-qQSfeUteZju9a8L7ajN2t-9e7cX-1d7AAepv1r8a9l7Cw6hUBRqEJ1BfLdbmFYY6K_Xa6xSBr_etxn8AfK0Nqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localize+surface+plasmon+resonance+of+silver+nanoparticles+using+Mie+theory&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Alzoubi%2C+F.+Y.&rft.au=Ahmad%2C+Ahmad+A.&rft.au=Aljarrah%2C+Ihsan+A.&rft.au=Migdadi%2C+A.+B.&rft.date=2023-11-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=34&rft.issue=32&rft_id=info:doi/10.1007%2Fs10854-023-11304-x&rft.externalDocID=10_1007_s10854_023_11304_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon