Localize surface plasmon resonance of silver nanoparticles using Mie theory
In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs....
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 34; no. 32; p. 2128 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with
fcc
structure with lattice constant
a
=
4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region. |
---|---|
AbstractList | In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with fcc structure with lattice constant a= 4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region. In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with fcc structure with lattice constant a = 4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region. In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with fcc structure with lattice constant $$a=$$ a = 4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region. |
ArticleNumber | 2128 |
Author | Alzoubi, F. Y. Aljarrah, Ihsan A. Migdadi, A. B. Ahmad, Ahmad A. Al-Bataineh, Qais M. |
Author_xml | – sequence: 1 givenname: F. Y. surname: Alzoubi fullname: Alzoubi, F. Y. organization: Department of Physical Sciences, Jordan University of Science & Technology – sequence: 2 givenname: Ahmad A. surname: Ahmad fullname: Ahmad, Ahmad A. organization: Department of Physical Sciences, Jordan University of Science & Technology – sequence: 3 givenname: Ihsan A. surname: Aljarrah fullname: Aljarrah, Ihsan A. organization: Department of Physical Sciences, Jordan University of Science & Technology – sequence: 4 givenname: A. B. surname: Migdadi fullname: Migdadi, A. B. organization: Department of Physical Sciences, Jordan University of Science & Technology – sequence: 5 givenname: Qais M. orcidid: 0000-0003-2852-4781 surname: Al-Bataineh fullname: Al-Bataineh, Qais M. email: qais.al-bataineh@isas.de organization: Leibniz Institut für Analytische Wissenschaften-ISAS-e.V, Experimental Physics, TU Dortmund University |
BookMark | eNp9kE9LAzEQxYMo2Fa_gKcFz6uTZHeTPUrxH1a8KHgLaTpbU7bJmmyl9dMbXUHw0NMww_vNe7wxOXTeISFnFC4ogLiMFGRZ5MB4TimHIt8ekBEtBc8LyV4PyQjqUuRFydgxGce4AoCq4HJEHmbe6NZ-YhY3odEGs67Vce1dFjB6p126-CaLtv3AkKXddzr01rQYs020bpk9Wsz6N_Rhd0KOGt1GPP2dE_Jyc_08vctnT7f306tZbnjF-7xCVmkQDMy8mOtFAwsEXnKNCILWc1qn_HzBKkk5T7F1hQ2Twgje1I0RFeMTcj787YJ_32Ds1cpvgkuWikkpBMiC86Rig8oEH2PARnXBrnXYKQrquzQ1lKZSaeqnNLVNkPwHGdvr3nrXB23b_Sgf0Jh83BLDX6o91Bep6oP0 |
CitedBy_id | crossref_primary_10_1016_j_molliq_2024_124927 crossref_primary_10_1021_acsomega_4c07927 crossref_primary_10_1002_agt2_559 crossref_primary_10_1016_j_cej_2024_151788 crossref_primary_10_1016_j_molliq_2025_126966 crossref_primary_10_1016_j_indic_2024_100470 crossref_primary_10_23939_ictee2024_01_148 crossref_primary_10_1002_VIW_20240077 crossref_primary_10_1007_s11082_025_08059_6 crossref_primary_10_1016_j_hybadv_2025_100389 crossref_primary_10_1177_09592989241296432 crossref_primary_10_1088_2040_8986_ad5b74 crossref_primary_10_1016_j_jlumin_2024_120873 crossref_primary_10_1007_s11468_024_02751_1 crossref_primary_10_1016_j_optmat_2024_115679 crossref_primary_10_1007_s11468_024_02408_z crossref_primary_10_55452_1998_6688_2024_21_4_210_218 crossref_primary_10_3389_fchem_2024_1432546 crossref_primary_10_59277_RomJPhys_2024_69_618 crossref_primary_10_1016_j_sna_2025_116249 crossref_primary_10_1016_j_ijhydene_2024_05_466 crossref_primary_10_1021_acsanm_4c06128 crossref_primary_10_1016_j_jddst_2024_106466 crossref_primary_10_1134_S1063783424600833 crossref_primary_10_1016_j_porgcoat_2025_109113 crossref_primary_10_1155_bca_2009069 crossref_primary_10_1016_j_cscee_2024_100811 crossref_primary_10_1088_1361_6455_ad6b68 crossref_primary_10_3390_ma18050940 crossref_primary_10_1007_s40735_024_00854_0 crossref_primary_10_3390_surfaces7030050 crossref_primary_10_1002_pssa_202400933 crossref_primary_10_1016_j_ijbiomac_2024_138236 crossref_primary_10_1088_2053_1591_ad48e2 crossref_primary_10_1016_j_kjs_2024_100201 crossref_primary_10_1007_s10854_024_13364_z crossref_primary_10_1007_s10904_024_03552_z crossref_primary_10_1016_j_jddst_2024_105732 |
Cites_doi | 10.1007/s10646-008-0213-1 10.1016/j.jcis.2011.01.054 10.1016/j.apsadv.2021.100057 10.1016/j.rinp.2018.12.091 10.1063/1.1630351 10.1021/ja104532z 10.1063/1.5111820 10.1007/s00253-009-2159-5 10.2217/nnm.11.117 10.1007/s11468-009-9088-0 10.1016/j.molliq.2008.11.014 10.1016/j.carbon.2016.02.050 10.1364/OE.26.006439 10.1002/anie.200601277 10.1016/0039-6028(93)90370-Y 10.1289/ehp.7339 10.1002/9783527633135 10.1016/j.optlaseng.2018.09.013 10.1021/cm0615875 10.1557/mrs2005.99 10.1038/nbt927 10.1007/978-1-4419-1151-3 10.1007/s41204-022-00260-2 10.1021/la101768n 10.1039/C4AN00978A 10.1038/s41598-020-63066-9 10.1039/C6RA14173K 10.2147/IJN.S83953 10.1021/nl062795z 10.1007/s11468-020-01121-x 10.1021/acsami.9b14980 10.1364/OL.8.000581 10.1021/ja003055+ 10.1021/cm201343k 10.1007/s003400100650 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-023-11304-x |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
ExternalDocumentID | 10_1007_s10854_023_11304_x |
GrantInformation_xml | – fundername: Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V. (3463) |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c363t-6e26a0720cb4badf0de0353aee0719b193043d268133095a6ef287c73f9fc7623 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 11:04:55 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Tue Jul 01 01:57:02 EDT 2025 Fri Feb 21 02:44:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-6e26a0720cb4badf0de0353aee0719b193043d268133095a6ef287c73f9fc7623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2852-4781 |
OpenAccessLink | https://link.springer.com/10.1007/s10854-023-11304-x |
PQID | 2887708433 |
PQPubID | 326250 |
ParticipantIDs | proquest_journals_2887708433 crossref_primary_10_1007_s10854_023_11304_x crossref_citationtrail_10_1007_s10854_023_11304_x springer_journals_10_1007_s10854_023_11304_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 2023-11-00 20231101 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Movsesyan, Baudrion, Adam (CR14) 2018; 26 Cobley, Skrabalak, Campbell, Xia (CR17) 2009; 4 Mahmoud, El-Sayed (CR32) 2010; 132 Al-zou’by, Alzoubi, Migdadi, Al-Zboon (CR5) 2023; 8 Paramelle, Sadovoy, Gorelik, Free, Hobley, Fernig (CR12) 2014; 139 Song, Zhang, Sun, Ren, Yang, Wang (CR23) 2019; 9 Liu, Chen, Prasad, Swihart (CR22) 2011; 23 Quinten (CR20) 2011 Lu, Kobayashi, Tawa, Ozaki (CR24) 2006; 18 Sagle, Ruvuna, Ruemmele, Van Duyne (CR29) 2011; 6 Alivisatos (CR31) 2004; 22 Amirjani, Firouzi, Haghshenas (CR25) 2020; 15 Jing, Wang, Zhao, Wang (CR9) 2019; 112 Jackson (CR34) 1999 Manna, Scher, Alivisatos (CR4) 2000; 122 Semchuk, Biliuk, Havryliuk, Biliuk (CR8) 2021; 3 Oberdörster, Oberdörster, Oberdörster (CR2) 2005; 113 Loiseau (CR21) 2019; 11 Meier, Wokaun (CR35) 1983; 8 Singh, Jha, Srivastava, Sarkar, Gogoi (CR40) 2013; 2 Gurunathan, Park, Han, Kim (CR6) 2015; 10 Jana, Ganguly, Pal (CR11) 2016; 6 Cai, Shalaev (CR38) 2010 Kheirandish, Javan, Mohammadzadeh (CR19) 2020; 10 Ghaforyan, Ebrahimzadeh, Bilankohi (CR33) 2015; 5 Quinten (CR27) 2001; 73 Halas (CR28) 2005; 30 Saion, Gharibshahi (CR1) 2011; 7 Christian, Von der Kammer, Baalousha, Hofmann (CR3) 2008; 17 Li, Xie, Shi, Zeng, You-Sheng, Chen (CR7) 2010; 85 Chen, Munechika, Ginger (CR16) 2007; 7 Alzoubi (CR37) 2021; 6 Tang (CR30) 2011; 356 Li, Lenhart, Walker (CR26) 2010; 26 Bhui, Bar, Sarkar, Sahoo, De, Misra (CR39) 2009; 145 Keller, Xiao, Bozhevolnyi (CR10) 1993; 280 Tao, Sinsermsuksakul, Yang (CR18) 2006; 45 Lozovski, Lienau, Tarasov, Vasyliev, Zhuchenko (CR13) 2019; 12 Kuwata, Tamaru, Esumi, Miyano (CR36) 2003; 83 Gong, Zhang, Zhu, Wang, Zhang, Zhang (CR41) 2016; 102 Bohren, Huffman (CR15) 2008 OY Semchuk (11304_CR8) 2021; 3 LB Sagle (11304_CR29) 2011; 6 S Liu (11304_CR22) 2011; 23 E Saion (11304_CR1) 2011; 7 MA Mahmoud (11304_CR32) 2010; 132 O Keller (11304_CR10) 1993; 280 G Oberdörster (11304_CR2) 2005; 113 V Lozovski (11304_CR13) 2019; 12 M Meier (11304_CR35) 1983; 8 W-R Li (11304_CR7) 2010; 85 L Manna (11304_CR4) 2000; 122 S Gurunathan (11304_CR6) 2015; 10 A Kheirandish (11304_CR19) 2020; 10 M Quinten (11304_CR27) 2001; 73 A Tao (11304_CR18) 2006; 45 H Song (11304_CR23) 2019; 9 L Lu (11304_CR24) 2006; 18 JY Al-zou’by (11304_CR5) 2023; 8 F Alzoubi (11304_CR37) 2021; 6 A Amirjani (11304_CR25) 2020; 15 N Halas (11304_CR28) 2005; 30 DK Bhui (11304_CR39) 2009; 145 A Singh (11304_CR40) 2013; 2 D Paramelle (11304_CR12) 2014; 139 B Tang (11304_CR30) 2011; 356 P Alivisatos (11304_CR31) 2004; 22 Y Chen (11304_CR16) 2007; 7 CF Bohren (11304_CR15) 2008 J Jana (11304_CR11) 2016; 6 A Movsesyan (11304_CR14) 2018; 26 M Quinten (11304_CR20) 2011 H Kuwata (11304_CR36) 2003; 83 P Christian (11304_CR3) 2008; 17 J-Y Jing (11304_CR9) 2019; 112 A Loiseau (11304_CR21) 2019; 11 H Ghaforyan (11304_CR33) 2015; 5 W Cai (11304_CR38) 2010 X Li (11304_CR26) 2010; 26 T Gong (11304_CR41) 2016; 102 JD Jackson (11304_CR34) 1999 CM Cobley (11304_CR17) 2009; 4 |
References_xml | – year: 2008 ident: CR15 publication-title: Absorption and scattering of light by small particles – volume: 17 start-page: 326 issue: 5 year: 2008 end-page: 343 ident: CR3 article-title: Nanoparticles: structure, properties, preparation and behaviour in environmental media publication-title: Ecotoxicology doi: 10.1007/s10646-008-0213-1 – volume: 6 start-page: 1 issue: 3 year: 2021 end-page: 9 ident: CR37 article-title: Physicochemical characteristics of silver nanoparticles: influence of carbonate alkalinity publication-title: Nanatechnol. Environ. Eng. – volume: 356 start-page: 513 issue: 2 year: 2011 end-page: 518 ident: CR30 article-title: Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.01.054 – volume: 3 start-page: 100057 year: 2021 ident: CR8 article-title: Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance publication-title: Appl. Surf. Sci. Adv. doi: 10.1016/j.apsadv.2021.100057 – volume: 12 start-page: 1197 year: 2019 end-page: 1201 ident: CR13 article-title: Configurational resonances in absorption of metal nanoparticles seeded onto a semiconductor surface publication-title: Results Phys. doi: 10.1016/j.rinp.2018.12.091 – volume: 83 start-page: 4625 issue: 22 year: 2003 end-page: 4627 ident: CR36 article-title: Resonant light scattering from metal nanoparticles: practical analysis beyond Rayleigh approximation publication-title: Appl. Phys. Lett. doi: 10.1063/1.1630351 – volume: 2 start-page: 153 issue: 11 year: 2013 end-page: 157 ident: CR40 article-title: Silver nanoparticles as fluorescent probes: new approach for bioimaging publication-title: Int. J. Sci. Technol. Res. – volume: 132 start-page: 12704 issue: 36 year: 2010 end-page: 12710 ident: CR32 article-title: Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104532z – volume: 9 start-page: 085307 issue: 8 year: 2019 ident: CR23 article-title: Triangular silver nanoparticle U-bent fiber sensor based on localized surface plasmon resonance publication-title: AIP Adv. doi: 10.1063/1.5111820 – volume: 85 start-page: 1115 issue: 4 year: 2010 end-page: 1122 ident: CR7 article-title: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2159-5 – volume: 6 start-page: 1447 issue: 8 year: 2011 end-page: 1462 ident: CR29 article-title: Advances in localized surface plasmon resonance spectroscopy biosensing publication-title: Nanomedicine doi: 10.2217/nnm.11.117 – volume: 4 start-page: 171 year: 2009 end-page: 179 ident: CR17 article-title: Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications publication-title: Plasmonics doi: 10.1007/s11468-009-9088-0 – volume: 145 start-page: 33 issue: 1 year: 2009 end-page: 37 ident: CR39 article-title: Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution publication-title: J. Mol. Liq doi: 10.1016/j.molliq.2008.11.014 – volume: 102 start-page: 245 year: 2016 end-page: 254 ident: CR41 article-title: Optical properties and surface-enhanced Raman scattering of hybrid structures with Ag nanoparticles and graphene publication-title: Carbon doi: 10.1016/j.carbon.2016.02.050 – volume: 26 start-page: 6439 issue: 5 year: 2018 end-page: 6445 ident: CR14 article-title: Extinction measurements of metallic nanoparticles arrays as a way to explore the single nanoparticle plasmon resonances publication-title: Opt. Express doi: 10.1364/OE.26.006439 – volume: 45 start-page: 4597 issue: 28 year: 2006 end-page: 4601 ident: CR18 article-title: Polyhedral silver nanocrystals with distinct scattering signatures publication-title: Angew Chem. Int. Ed. doi: 10.1002/anie.200601277 – volume: 280 start-page: 217 issue: 1–2 year: 1993 end-page: 230 ident: CR10 article-title: Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach publication-title: Surf. Sci. doi: 10.1016/0039-6028(93)90370-Y – volume: 113 start-page: 823 issue: 7 year: 2005 end-page: 839 ident: CR2 article-title: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles publication-title: Environ. Health Perspect. doi: 10.1289/ehp.7339 – volume: 7 start-page: 6 issue: 1 year: 2011 end-page: 11 ident: CR1 article-title: On the theory of metal nanoparticles based on quantum mechanical calculation publication-title: Malaysian J. Fundam. Appl. Sci. – year: 2011 ident: CR20 publication-title: Optical Properties of Nanoparticle Systems doi: 10.1002/9783527633135 – volume: 112 start-page: 103 year: 2019 end-page: 118 ident: CR9 article-title: Long-range surface plasmon resonance and its sensing applications: a review publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.09.013 – volume: 18 start-page: 4894 issue: 20 year: 2006 end-page: 4901 ident: CR24 article-title: Silver nanoplates with special shapes: controlled synthesis and their surface plasmon resonance and surface-enhanced Raman scattering properties publication-title: Chem. Mater. doi: 10.1021/cm0615875 – volume: 30 start-page: 362 issue: 5 year: 2005 end-page: 367 ident: CR28 article-title: Playing with plasmons: tuning the optical resonant properties of metallic nanoshells publication-title: MRS Bull. doi: 10.1557/mrs2005.99 – volume: 22 start-page: 47 issue: 1 year: 2004 end-page: 52 ident: CR31 article-title: The use of nanocrystals in biological detection publication-title: Nat. Biotechnol. doi: 10.1038/nbt927 – start-page: 6011 year: 2010 ident: CR38 publication-title: Optical metamaterials doi: 10.1007/978-1-4419-1151-3 – volume: 8 start-page: 119 issue: 1 year: 2023 end-page: 129 ident: CR5 article-title: Evaluating the impacts of manufactured silver nanoparticles dispersed in various wastewaters on biochemical oxygen demand kinetics of the resulting wastewaters publication-title: Nanatechnol. Environ. Eng. doi: 10.1007/s41204-022-00260-2 – volume: 26 start-page: 16690 issue: 22 year: 2010 end-page: 16698 ident: CR26 article-title: Dissolution-accompanied aggregation kinetics of silver nanoparticles publication-title: Langmuir doi: 10.1021/la101768n – year: 1999 ident: CR34 publication-title: Classical Electrodynamics – volume: 139 start-page: 4855 issue: 19 year: 2014 end-page: 4861 ident: CR12 article-title: A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV–Visible light spectra publication-title: Analyst doi: 10.1039/C4AN00978A – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 10 ident: CR19 article-title: Modified drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement publication-title: Sci. Rep. doi: 10.1038/s41598-020-63066-9 – volume: 5 start-page: 79 issue: 4 year: 2015 end-page: 82 ident: CR33 article-title: Study of the optical properties of nanoparticles using Mie theory publication-title: World Appl. Programm – volume: 6 start-page: 86174 issue: 89 year: 2016 end-page: 86211 ident: CR11 article-title: Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application publication-title: RSC Adv. doi: 10.1039/C6RA14173K – volume: 10 start-page: 4203 year: 2015 end-page: 4223 ident: CR6 article-title: Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S83953 – volume: 7 start-page: 690 issue: 3 year: 2007 end-page: 696 ident: CR16 article-title: Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles publication-title: Nano Lett. doi: 10.1021/nl062795z – volume: 15 start-page: 1077 year: 2020 end-page: 1082 ident: CR25 article-title: Predicting the size of silver nanoparticles from their optical properties publication-title: Plasmonics doi: 10.1007/s11468-020-01121-x – volume: 11 start-page: 46462 issue: 50 year: 2019 end-page: 46471 ident: CR21 article-title: Core–shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14980 – volume: 8 start-page: 581 issue: 11 year: 1983 end-page: 583 ident: CR35 article-title: Enhanced fields on large metal particles: dynamic depolarization publication-title: Opt. Lett. doi: 10.1364/OL.8.000581 – volume: 122 start-page: 12700 issue: 51 year: 2000 end-page: 12706 ident: CR4 article-title: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja003055+ – volume: 23 start-page: 4098 issue: 18 year: 2011 end-page: 4101 ident: CR22 article-title: Synthesis of monodisperse au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency publication-title: Chem. Mater. doi: 10.1021/cm201343k – volume: 73 start-page: 245 issue: 3 year: 2001 end-page: 255 ident: CR27 article-title: Local fields close to the surface of nanoparticles and aggregates of nanoparticles publication-title: Appl. Phys. B doi: 10.1007/s003400100650 – volume: 6 start-page: 1 issue: 3 year: 2021 ident: 11304_CR37 publication-title: Nanatechnol. Environ. Eng. – volume: 45 start-page: 4597 issue: 28 year: 2006 ident: 11304_CR18 publication-title: Angew Chem. Int. Ed. doi: 10.1002/anie.200601277 – volume: 11 start-page: 46462 issue: 50 year: 2019 ident: 11304_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14980 – volume: 280 start-page: 217 issue: 1–2 year: 1993 ident: 11304_CR10 publication-title: Surf. Sci. doi: 10.1016/0039-6028(93)90370-Y – volume: 6 start-page: 1447 issue: 8 year: 2011 ident: 11304_CR29 publication-title: Nanomedicine doi: 10.2217/nnm.11.117 – volume: 22 start-page: 47 issue: 1 year: 2004 ident: 11304_CR31 publication-title: Nat. Biotechnol. doi: 10.1038/nbt927 – volume-title: Classical Electrodynamics year: 1999 ident: 11304_CR34 – volume: 356 start-page: 513 issue: 2 year: 2011 ident: 11304_CR30 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.01.054 – volume: 23 start-page: 4098 issue: 18 year: 2011 ident: 11304_CR22 publication-title: Chem. Mater. doi: 10.1021/cm201343k – volume: 145 start-page: 33 issue: 1 year: 2009 ident: 11304_CR39 publication-title: J. Mol. Liq doi: 10.1016/j.molliq.2008.11.014 – volume: 6 start-page: 86174 issue: 89 year: 2016 ident: 11304_CR11 publication-title: RSC Adv. doi: 10.1039/C6RA14173K – volume: 26 start-page: 6439 issue: 5 year: 2018 ident: 11304_CR14 publication-title: Opt. Express doi: 10.1364/OE.26.006439 – volume: 17 start-page: 326 issue: 5 year: 2008 ident: 11304_CR3 publication-title: Ecotoxicology doi: 10.1007/s10646-008-0213-1 – volume: 85 start-page: 1115 issue: 4 year: 2010 ident: 11304_CR7 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2159-5 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 11304_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-020-63066-9 – volume: 10 start-page: 4203 year: 2015 ident: 11304_CR6 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S83953 – volume: 9 start-page: 085307 issue: 8 year: 2019 ident: 11304_CR23 publication-title: AIP Adv. doi: 10.1063/1.5111820 – volume: 83 start-page: 4625 issue: 22 year: 2003 ident: 11304_CR36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1630351 – volume: 12 start-page: 1197 year: 2019 ident: 11304_CR13 publication-title: Results Phys. doi: 10.1016/j.rinp.2018.12.091 – volume: 139 start-page: 4855 issue: 19 year: 2014 ident: 11304_CR12 publication-title: Analyst doi: 10.1039/C4AN00978A – volume: 3 start-page: 100057 year: 2021 ident: 11304_CR8 publication-title: Appl. Surf. Sci. Adv. doi: 10.1016/j.apsadv.2021.100057 – volume: 26 start-page: 16690 issue: 22 year: 2010 ident: 11304_CR26 publication-title: Langmuir doi: 10.1021/la101768n – volume: 113 start-page: 823 issue: 7 year: 2005 ident: 11304_CR2 publication-title: Environ. Health Perspect. doi: 10.1289/ehp.7339 – volume: 112 start-page: 103 year: 2019 ident: 11304_CR9 publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.09.013 – volume: 4 start-page: 171 year: 2009 ident: 11304_CR17 publication-title: Plasmonics doi: 10.1007/s11468-009-9088-0 – volume: 102 start-page: 245 year: 2016 ident: 11304_CR41 publication-title: Carbon doi: 10.1016/j.carbon.2016.02.050 – volume: 5 start-page: 79 issue: 4 year: 2015 ident: 11304_CR33 publication-title: World Appl. Programm – volume: 2 start-page: 153 issue: 11 year: 2013 ident: 11304_CR40 publication-title: Int. J. Sci. Technol. Res. – volume: 7 start-page: 690 issue: 3 year: 2007 ident: 11304_CR16 publication-title: Nano Lett. doi: 10.1021/nl062795z – volume: 122 start-page: 12700 issue: 51 year: 2000 ident: 11304_CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja003055+ – volume-title: Optical Properties of Nanoparticle Systems year: 2011 ident: 11304_CR20 doi: 10.1002/9783527633135 – volume: 8 start-page: 581 issue: 11 year: 1983 ident: 11304_CR35 publication-title: Opt. Lett. doi: 10.1364/OL.8.000581 – volume: 73 start-page: 245 issue: 3 year: 2001 ident: 11304_CR27 publication-title: Appl. Phys. B doi: 10.1007/s003400100650 – volume-title: Absorption and scattering of light by small particles year: 2008 ident: 11304_CR15 – volume: 30 start-page: 362 issue: 5 year: 2005 ident: 11304_CR28 publication-title: MRS Bull. doi: 10.1557/mrs2005.99 – volume: 7 start-page: 6 issue: 1 year: 2011 ident: 11304_CR1 publication-title: Malaysian J. Fundam. Appl. Sci. – volume: 8 start-page: 119 issue: 1 year: 2023 ident: 11304_CR5 publication-title: Nanatechnol. Environ. Eng. doi: 10.1007/s41204-022-00260-2 – volume: 15 start-page: 1077 year: 2020 ident: 11304_CR25 publication-title: Plasmonics doi: 10.1007/s11468-020-01121-x – volume: 132 start-page: 12704 issue: 36 year: 2010 ident: 11304_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104532z – start-page: 6011 volume-title: Optical metamaterials year: 2010 ident: 11304_CR38 doi: 10.1007/978-1-4419-1151-3 – volume: 18 start-page: 4894 issue: 20 year: 2006 ident: 11304_CR24 publication-title: Chem. Mater. doi: 10.1021/cm0615875 |
SSID | ssj0006438 |
Score | 2.606607 |
Snippet | In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2128 |
SubjectTerms | Absorption cross sections Biosensors Characterization and Evaluation of Materials Chemical reduction Chemistry and Materials Science Cubic lattice Lattice parameters Materials Science Mie scattering Nanoparticles Optical and Electronic Materials Optical properties Optoelectronic devices Photovoltaic cells Scattering cross sections Silver Solar cells Surface plasmon resonance Time domain analysis Visible spectrum |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66XfQg_sTplBy8abBt0rQ7icrGUDdEHOxWkjSRgWxz3WD61_vSpqsK7ljahvK95nvvJS_fQ-gCZgzlLcVIJCUnLDaWByPIeQSnQjJh_Lx_Sq_PuwP2MAyHbsEtc2WVJSfmRJ1OlF0jvw5gNkRezCi9mX4Q2zXK7q66FhqbqA4UHEPyVb9r959fVlwM_jYu1PasuncQuGMz7vBcHDICPov4QOSMLH-7pire_LNFmnuezi7acSEjvi1svIc29Hgfbf8QEjxAj0_WJY2-NM4WMyOUxlOIiuGTMWTTE6upofHE4Gxk66AxXEOq7CrisK18f8O9kcb5ocbPQzTotF_vu8S1SSCKcjonXAdcAL6ekkyK1Hip9mhIhdYQPrQkRGgeo2nAY0hHAQjBtQGoVERNyyjgQnqEauPJWB8jHEnb8kUKP1QpeLdYAi0ryjQXUkehEQ3klwglymmI21YW70mlfmxRTQDVJEc1WTbQ5eqdaaGgsfbpZgl84mZTllS2b6Cr0hjV7f9HO1k_2inaCgr7E89votp8ttBnEGPM5bn7kb4BThnNnA priority: 102 providerName: ProQuest |
Title | Localize surface plasmon resonance of silver nanoparticles using Mie theory |
URI | https://link.springer.com/article/10.1007/s10854-023-11304-x https://www.proquest.com/docview/2887708433 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aXvQgPrFaSw7eNLC7yWa3x1r7wD4QtVBPS5ImUpC2dFtQf72TfbRVVPAUlmRzmEy--YbMA6FLuDGUVxUjgZScsNBYHAzA5xGcCsmEcZP-Kb0-bw_Y3dAfZklhcR7tnj9JJki9kewW-oyAjSEuAC8jwByLvvXdQYsHXm2Fv2Bjw7TCnq3o7XlZqszPe3w1R2uO-e1ZNLE2zX20l9FEXEvP9QBt6ckh2t0oHniEOl1rhsYfGsfLuRFK4xkwYdAqDB701NbR0HhqcDy2sc8YvsE9zqLgsI12f8G9scZJIuP7MRo0G0_1NslaIxBFOV0Qrj0uQKaOkkyKkXFG2qE-FVoDZahKYGUOoyOPh-CCgiAE1wZcIxVQUzUK8I-eoMJkOtGnCAfStnmRwvXVCCxaKAGKFWWaC6kD34gScnMJRSqrG27bV7xG64rHVqoRSDVKpBq9ldDV6p9ZWjXjz9XlXPBRdoPiyAP0C5yQUVpC1_lhrKd_3-3sf8vP0Y6X6gNx3DIqLOZLfQE8YyEraDtstiqoWLvtdR_t2HruNGC8afTvH2C2zuuVRPU-AUTL0Aw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HIAD4ikGA3KAE0S0TZp2B4QQMAbbOIHErSRpgiahbbAhGD-K34jTBwMkuHGs2kaVY_uzG_szwA5aDBM1zWmklKA8ts4PRpjzSMGk4tL62fyU9pVo3PDL2_B2At7LXhhXVln6xMxRpz3t_pEfBGgNkRdzxo76j9RNjXKnq-UIjVwtmmb0ginb4PDiFPd3NwjqZ9cnDVpMFaCaCTakwgRC4ud4WnElU-ulxmMhk8Yg2tYUBjQeZ2kgYszeMP6QwljMKnTEbM1qdB0M152EafyQmrOouH7-6fkR3eOc289xiQdB0aRTtOrFIaeIkNRH2OD09TsQjqPbHweyGc7VF2C-CFDJca5RizBhuksw94W2cBmaLQeAnTdDBs9PVmpD-hiDo4AI5u49x-BhSM-SQcdVXRO8xsS8qL8jrs7-nrQ7hmQtlKMVuPkX8a3CVLfXNWtAIuUGzCjphzpFLI0VgoBm3AipTBRaWQG_lFCiC8ZyNzjjIRlzLTupJijVJJNq8lqBvc93-jlfx59PV0vBJ4XtDpKxplVgv9yM8e3fV1v_e7VtmGlct1tJ6-KquQGzQa4L1POrMDV8ejabGN0M1VamUgTu_luHPwCp4wgZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-VVprgAcEGWmGAH8YTWEtix0kf0DRoq239UIWotLdgOzaqhNrSD9Hxp_HXcU6cFpDWtz1GSazofHe_-8X3AXCKFsNES3OaKCUoT63zgwlyHimYVFzasJifMhiKyzG_volvavC7qoVxaZWVTywcdT7T7h_5WYTWkAQpZ-zM-rSIUbt7Pv9B3QQpd9JajdMoVaRnbn8ifVt-uGrjXr-Nom7ny6dL6icMUM0EW1FhIiHx0wKtuJK5DXITsJhJYxB5WwqDm4CzPBIpMjmMRaQwFhmGTphtWY1uhOG6D6CRICsK6tD42BmOPm9xALE-LTv9uc7iUeRLdnzhXhpzinhJQwQRTjf_wuIu1v3veLZAve4TeOzDVXJR6tdTqJnpITz6q4nhEfT6Dg4nvwxZrhdWakPmGJGjiAgy-Znr52HIzJLlxOVgE7xGmu6z8YjLuv9GBhNDioLK22cwvhcBPof6dDY1x0AS5cbNKBnGOkdkTRVCgmbcCKlMElvZhLCSUKZ9_3I3RuN7tuu87KSaoVSzQqrZpgnvtu_My-4de58-qQSfeUteZju9a8L7ajN2t-9e7cX-1d7AAepv1r8a9l7Cw6hUBRqEJ1BfLdbmFYY6K_Xa6xSBr_etxn8AfK0Nqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localize+surface+plasmon+resonance+of+silver+nanoparticles+using+Mie+theory&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Alzoubi%2C+F.+Y.&rft.au=Ahmad%2C+Ahmad+A.&rft.au=Aljarrah%2C+Ihsan+A.&rft.au=Migdadi%2C+A.+B.&rft.date=2023-11-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=34&rft.issue=32&rft_id=info:doi/10.1007%2Fs10854-023-11304-x&rft.externalDocID=10_1007_s10854_023_11304_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |