Localize surface plasmon resonance of silver nanoparticles using Mie theory
In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs....
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 34; no. 32; p. 2128 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, the optical properties of silver nanoparticles (AgNPs) were explored using Mie theory compared with the experimental AgNPs using the chemical reduction method. Mie’s theory is suited for accurately evaluating the scattering, absorption, and extinction cross-sections of spherical AgNPs. Therefore, the wavelength of localized surface plasmon resonance (LSPR) in the optical spectra of the spherical AgNPs was calculated. The experimental AgNPs have a spherical shape with an average particle size of 30 nm. In addition, the crystalline structure of AgNPs was found to be cubic with
fcc
structure with lattice constant
a
=
4.155 Å. Moreover, the excitation of the LSPR of the AgNPs was simulated using the finite-difference time-domain (FDTD) method at different wavelengths to explore the LSPR phenomena. The results show that spherical AgNPs are the most widely used materials in biosensors, biomedicine, optoelectronic devices, and solar cells due to their surface plasmon resonances in the visible spectrum region. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-023-11304-x |