Effect of annealing on physical properties of CBD synthesized nanocrystalline FeSe thin films

Nanocrystalline FeSe thin films were successfully prepared by solution growth method using ferric chloride and sodium selenosulphate as cationic and anionic precursors along with complexing agent oxalic acid. The thickness dependent physical properties of FeSe thin films prepared by varying depositi...

Full description

Saved in:
Bibliographic Details
Published inMaterials science in semiconductor processing Vol. 27; pp. 280 - 287
Main Authors Ubale, Ashok U., Welekar, Naina R., Mitkari, Amruta V.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanocrystalline FeSe thin films were successfully prepared by solution growth method using ferric chloride and sodium selenosulphate as cationic and anionic precursors along with complexing agent oxalic acid. The thickness dependent physical properties of FeSe thin films prepared by varying deposition time are discussed. The FeSe films of thickness 161nm were further annealed to investigate its impact on physical properties. The X-ray diffraction studies showed that, as deposited FeSe films are nano crystalline in nature and their crystallinity increases with thickness as well as with annealing temperature. The morphological studies showed that FeSe exhibits granular surface with channel like features at higher thickness. The electrical resistivity and thermo-emf measurements confirmed that, FeSe films are semiconducting in nature with P-type conductivity. The activation and band gap energies of FeSe films are found dependent on film thickness as well as on annealing temperature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1369-8001
1873-4081
DOI:10.1016/j.mssp.2014.06.035