Approximation of functions from Korobov spaces by deep convolutional neural networks

The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of m...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 48; no. 6
Main Authors Mao, Tong, Zhou, Ding-Xuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality.
AbstractList The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality.
ArticleNumber 84
Author Mao, Tong
Zhou, Ding-Xuan
Author_xml – sequence: 1
  givenname: Tong
  surname: Mao
  fullname: Mao, Tong
  organization: School of Data Science, City University of Hong Kong
– sequence: 2
  givenname: Ding-Xuan
  orcidid: 0000-0003-0224-9216
  surname: Zhou
  fullname: Zhou, Ding-Xuan
  email: dingxuan.zhou@sydney.edu.au
  organization: School of Mathematics and Statistics, University of Sydney
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bbI5lqJWLHip57CbJrJ1u1mT3dr-e9OuIHjoaQbmfYaZZwJGjW8sALcE3xOM5UMkmHOOMKUIK6UI2l-AMckkRSoNRqnHRCFJRH4FJjFuMMZKyGwMVrO2DX5fbYuu8g30Drq-Mcc-Qhf8Fr764Eu_g7EtjI2wPMC1tS00vtn5uj8Gixo2tg-n0n378BmvwaUr6mhvfusUvD89ruYLtHx7fpnPlsgwwTokpHBKspyajAtDBSEud7JYU5Xx3GHFsc2NUNYJo4gpKaVOZAUzmBpSUpazKbgb9qYXvnobO73xfUgHRU0ll4pIxmlK5UPKBB9jsE6bqju924WiqjXB-uhQDw51cqhPDvU-ofQf2oakKhzOQ2yAYgo3Hzb8XXWG-gGgvIeX
CitedBy_id crossref_primary_10_1016_j_neunet_2024_106702
crossref_primary_10_1016_j_neunet_2024_106922
crossref_primary_10_1016_j_sigpro_2025_109983
crossref_primary_10_1162_neco_a_01650
crossref_primary_10_1016_j_jco_2023_101784
crossref_primary_10_1016_j_ins_2024_120573
crossref_primary_10_1142_S0219530524400013
crossref_primary_10_1016_j_acha_2024_101714
crossref_primary_10_1016_j_neunet_2024_106226
Cites_doi 10.1162/neco.2006.18.7.1527
10.1142/S0219530519400074
10.1007/s11633-017-1054-2
10.1109/TIT.2016.2634401
10.3934/mfc.2022021
10.1016/S0893-6080(05)80131-5
10.1016/j.acha.2019.06.004
10.1016/j.neunet.2020.07.029
10.1142/S0219530518500124
10.1007/BF02070821
10.1109/TNNLS.2018.2868980
10.1016/j.neunet.2021.09.027
10.1016/j.neunet.2020.01.018
10.1137/18M1189336
10.1016/j.neunet.2017.07.002
10.1145/3065386
10.1109/TIT.2018.2874447
10.1017/S0962492904000182
10.1109/TNNLS.2020.3027613
10.1002/047134608X.W8424
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10444-022-09991-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_022_09991_x
GrantInformation_xml – fundername: University of Sydney
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c363t-676f97382c546c2611f8f7ad29548f0940e8c69ef6c91cb222f65a3c02c1b2383
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Fri Jul 25 11:00:27 EDT 2025
Tue Jul 01 02:55:35 EDT 2025
Thu Apr 24 23:07:29 EDT 2025
Fri Feb 21 02:43:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep convolutional neural networks
Curse of dimensionality
Korobov spaces
68T07
41A25
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-676f97382c546c2611f8f7ad29548f0940e8c69ef6c91cb222f65a3c02c1b2383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0224-9216
OpenAccessLink https://link.springer.com/10.1007/s10444-022-09991-x
PQID 2747917342
PQPubID 2043875
ParticipantIDs proquest_journals_2747917342
crossref_citationtrail_10_1007_s10444_022_09991_x
crossref_primary_10_1007_s10444_022_09991_x
springer_journals_10_1007_s10444_022_09991_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Feng, Hou, Wei, Zhou (CR6) 2022; 5
Hinton, Osindero, Teh (CR7) 2006; 18
CR19
Yarotsky (CR20) 2017; 94
Poggio, Mhaskar, Rosasco, Miranda, Liao (CR18) 2017; 14
Mao, Shi, Zhou (CR14) 2021; 144
Zhou (CR21) 2020; 48
Klusowski, Barron (CR9) 2018; 64
CR12
Chui, Lin, Zhou (CR3) 2019; 17
Hoefler, Alistarh, Ben-Nun, Dryden, Peste (CR8) 2021; 22
Kohler, Krzyżak (CR10) 2016; 63
Mhaskar (CR15) 1993; 1
Zhou (CR23) 2018; 16
Pinkus (CR17) 1993; 6
Montanelli, Du (CR16) 2019; 1
CR4
Bungartz, Griebel (CR1) 2004; 13
Chui, Lin, Zhang, Zhou (CR2) 2022; 33
CR25
Krizhevsky, Sutskever, Hinton (CR11) 2012; 60
CR24
Lin (CR13) 2019; 30
Zhou (CR22) 2020; 124
Fang, Feng, Huang, Zhou (CR5) 2020; 131
JM Klusowski (9991_CR9) 2018; 64
9991_CR24
9991_CR25
CK Chui (9991_CR3) 2019; 17
H Montanelli (9991_CR16) 2019; 1
T Poggio (9991_CR18) 2017; 14
H-J Bungartz (9991_CR1) 2004; 13
T Hoefler (9991_CR8) 2021; 22
A Pinkus (9991_CR17) 1993; 6
DX Zhou (9991_CR22) 2020; 124
M Kohler (9991_CR10) 2016; 63
T Mao (9991_CR14) 2021; 144
9991_CR4
H Feng (9991_CR6) 2022; 5
HN Mhaskar (9991_CR15) 1993; 1
GE Hinton (9991_CR7) 2006; 18
9991_CR19
DX Zhou (9991_CR21) 2020; 48
Z Fang (9991_CR5) 2020; 131
DX Zhou (9991_CR23) 2018; 16
CK Chui (9991_CR2) 2022; 33
9991_CR12
SB Lin (9991_CR13) 2019; 30
A Krizhevsky (9991_CR11) 2012; 60
D Yarotsky (9991_CR20) 2017; 94
References_xml – volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: CR7
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 17
  start-page: 737
  year: 2019
  end-page: 772
  ident: CR3
  article-title: Deep neural networks for rotation-invariance approximation and learning
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530519400074
– ident: CR4
– ident: CR12
– volume: 14
  start-page: 503
  year: 2017
  end-page: 519
  ident: CR18
  article-title: Why and when can deep—but not shallow—networks avoid the curse of dimensionality: a review
  publication-title: Internat. J. Automation Comput.
  doi: 10.1007/s11633-017-1054-2
– volume: 22
  start-page: 1
  year: 2021
  end-page: 124
  ident: CR8
  article-title: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 63
  start-page: 1620
  year: 2016
  end-page: 1630
  ident: CR10
  article-title: Nonparametric regression based on hierarchical interaction models
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2016.2634401
– volume: 5
  start-page: 351
  year: 2022
  end-page: 362
  ident: CR6
  article-title: CNN models for readability of Chinese texts
  publication-title: Math. Found. Comp.
  doi: 10.3934/mfc.2022021
– volume: 6
  start-page: 861
  year: 1993
  end-page: 867
  ident: CR17
  article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80131-5
– volume: 48
  start-page: 787
  year: 2020
  end-page: 794
  ident: CR21
  article-title: Universality of deep convolutional neural networks
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2019.06.004
– ident: CR25
– volume: 131
  start-page: 154
  year: 2020
  end-page: 162
  ident: CR5
  article-title: Theory of deep convolutional neural networks II: spherical analysis
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.029
– volume: 16
  start-page: 895
  year: 2018
  end-page: 919
  ident: CR23
  article-title: Deep distributed convolutional neural networks: universality
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530518500124
– volume: 1
  start-page: 61
  year: 1993
  end-page: 80
  ident: CR15
  article-title: Approximation properties of a multilayered feedforward artificial neural network
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02070821
– ident: CR19
– volume: 30
  start-page: 1392
  year: 2019
  end-page: 1406
  ident: CR13
  article-title: Generalization and expressivity for deep nets
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2018.2868980
– volume: 144
  start-page: 778
  year: 2021
  end-page: 790
  ident: CR14
  article-title: Theory of deep convolutional neural networks III: Approximating radial functions
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.09.027
– volume: 124
  start-page: 319
  year: 2020
  end-page: 327
  ident: CR22
  article-title: Theory of deep convolutional neural networks: Downsampling
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.01.018
– volume: 1
  start-page: 78
  year: 2019
  end-page: 92
  ident: CR16
  article-title: New error bounds for deep reLU networks using sparse grids
  publication-title: SIAM Journal on Mathematics of Data Science
  doi: 10.1137/18M1189336
– volume: 94
  start-page: 103
  year: 2017
  end-page: 114
  ident: CR20
  article-title: Error bounds for approximations with deep reLU networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.002
– volume: 60
  start-page: 84
  year: 2012
  end-page: 90
  ident: CR11
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 64
  start-page: 7649
  year: 2018
  end-page: 7656
  ident: CR9
  article-title: Approximation by combinations of reLU and squared reLU ridge functions with ℓ1 and ℓ0 controls
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2018.2874447
– volume: 13
  start-page: 147
  year: 2004
  end-page: 269
  ident: CR1
  article-title: Sparse grids
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume: 33
  start-page: 229
  year: 2022
  end-page: 243
  ident: CR2
  article-title: Realization of spatial sparseness by deep reLU nets with massive data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3027613
– ident: CR24
– volume: 1
  start-page: 61
  year: 1993
  ident: 9991_CR15
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02070821
– volume: 13
  start-page: 147
  year: 2004
  ident: 9991_CR1
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume: 60
  start-page: 84
  year: 2012
  ident: 9991_CR11
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 9991_CR4
– ident: 9991_CR19
– volume: 18
  start-page: 1527
  year: 2006
  ident: 9991_CR7
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 144
  start-page: 778
  year: 2021
  ident: 9991_CR14
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.09.027
– volume: 30
  start-page: 1392
  year: 2019
  ident: 9991_CR13
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2018.2868980
– volume: 17
  start-page: 737
  year: 2019
  ident: 9991_CR3
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530519400074
– ident: 9991_CR24
  doi: 10.1002/047134608X.W8424
– volume: 64
  start-page: 7649
  year: 2018
  ident: 9991_CR9
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2018.2874447
– volume: 131
  start-page: 154
  year: 2020
  ident: 9991_CR5
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.029
– volume: 124
  start-page: 319
  year: 2020
  ident: 9991_CR22
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.01.018
– volume: 22
  start-page: 1
  year: 2021
  ident: 9991_CR8
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 229
  year: 2022
  ident: 9991_CR2
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3027613
– volume: 63
  start-page: 1620
  year: 2016
  ident: 9991_CR10
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2016.2634401
– ident: 9991_CR12
– volume: 14
  start-page: 503
  year: 2017
  ident: 9991_CR18
  publication-title: Internat. J. Automation Comput.
  doi: 10.1007/s11633-017-1054-2
– volume: 48
  start-page: 787
  year: 2020
  ident: 9991_CR21
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2019.06.004
– volume: 16
  start-page: 895
  year: 2018
  ident: 9991_CR23
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530518500124
– volume: 94
  start-page: 103
  year: 2017
  ident: 9991_CR20
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.07.002
– ident: 9991_CR25
– volume: 1
  start-page: 78
  year: 2019
  ident: 9991_CR16
  publication-title: SIAM Journal on Mathematics of Data Science
  doi: 10.1137/18M1189336
– volume: 5
  start-page: 351
  year: 2022
  ident: 9991_CR6
  publication-title: Math. Found. Comp.
  doi: 10.3934/mfc.2022021
– volume: 6
  start-page: 861
  year: 1993
  ident: 9991_CR17
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80131-5
SSID ssj0009675
Score 2.4198515
Snippet The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Approximation
Artificial neural networks
Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Visualization
Title Approximation of functions from Korobov spaces by deep convolutional neural networks
URI https://link.springer.com/article/10.1007/s10444-022-09991-x
https://www.proquest.com/docview/2747917342
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOjBH6gRRdKDN23Ctq7bjoOARAInSPC0rF2bmBhGGBr8721Lx9Soiace1nbJe69938t77yvArUMCQTNf4ExBN0xc1sEp5QS7KWFBmhLeCXTv8HhChzPyOPfntimsKKvdy5Skuak_NbsRQrCuPjeoBivkWPd17K6seObGFdUuNfS6ytYirKKB0LbK_LzHV3dUYcxvaVHjbQYncGRhIoq3ej2FPbFowLGFjMgeyKIBh-Md7WpxBtNYM4RvnrftiCiXSLstY1lI95GgUb7KWf6G1DWiliP2jjIhlkiXnlsTVD_VFJdmMAXixTnMBv1pb4jtswmYe9RbYxpQGQVe6HKfUK4iJEeGMkgzndELpebLEyGnkZCURw5nCiBI6qce77jcYcqDexdQW-QLcQlIdqhgJFOeTnrE40HqSBVwMe6ziEVumDbBKaWXcMsprp-2eEkqNmQt8URJPDESTzZNuNutWW4ZNf6c3SqVktjTVSQ6klZhpkfcJtyXiqo-_77b1f-mX8OBq23FVK-0oLZevYobhUHWrA31eNDtTvT48DTqt2G_R3ttY4gf4lvXIg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD-rBH1NxOjUHbxpYmzRtj2Mo0_04bbBbSdIEBFnHOmX-9-Zl2YpDBU89NEnhvZe-75H3fUHoLmCx5nmkSW6hG2GhbBHBFSOhYDIWgqlWDNzhwZB3x-xlEk28TA5wYbbO74Hixhgj0HPusAyxeHGX2UoZ2vc6vFMJ7HInqmsjLCW2Bkg8QebnNb4noQpZbh2GuhzzdIwOPTjE7ZU3T9COntbRkQeK2G_Dso4OBhux1fIUjdqgC758XZEQcWEwJCsXTxjYI7hXzAtZfGD787DTsfzEudYzDA3nPvDsR0HY0j1cW3h5hsZPj6NOl_jLEoiinC4Ij7lJY5qEKmJc2booMImJRQ7neIkBlTydKJ5qw1UaKGlhgeGRoKoVqkDavE3PUW1aTPUFwqbFtWS5zW-GMqpiERhbZkkVyVSmYSIaKFhbL1NeSRwutHjLKg1ksHhmLZ45i2fLBrrfzJmtdDT-HN1cOyXze6rMoH62xSVlYQM9rB1Vvf59tcv_Db9Fe93RoJ_1n4e9K7QfQty4_pUmqi3m7_raopCFvHHh9wUGqNIH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIHrwx1ScTs3Bm4atTZq2xzEd07nhYYPdSpImIEg71irzvzdJ23WKCp56aJLCy0vf93jv-wLAtUN8SWNPolhDN0Rc3kGMCoJcRrjPGBEd33CHR2M6mJLHmTdbY_HbbveqJFlwGoxKU5K357FqrxHfCCHIdKJbhIM0itzSmYot1PZor5bdpVZqV_tdiHRmEJS0mZ_X-Bqaarz5rURqI0__AOyVkBF2iz0-BBsyaYD9Ej7C8nBmDbA7WkmwZkdg0jVq4cuXgpoIUwVNCLNeBg2nBA7TRcrTd6h_KXo65B8wlnIOTRt66Y76o0bu0j5ss3h2DKb9-0lvgMorFJDAFOeI-lSFPg5c4REqdLbkqED5LDbVvUAZ7TwZCBpKRUXoCK7BgqIew6LjCofraI5PwGaSJvIUQNWhkpNYRz2FCRY-c5ROvrjweMhDN2BN4FTWi0SpL26uuXiNamVkY_FIWzyyFo-WTXCzmjMv1DX-HN2qNiUqT1oWmaxap5yYuE1wW21U_fr31c7-N_wKbD_f9aOnh_HwHOy4xm1sU0sLbOaLN3mhoUnOL633fQISeNpO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+of+functions+from+Korobov+spaces+by+deep+convolutional+neural+networks&rft.jtitle=Advances+in+computational+mathematics&rft.au=Mao%2C+Tong&rft.au=Zhou%2C+Ding-Xuan&rft.date=2022-12-01&rft.pub=Springer+US&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=48&rft.issue=6&rft_id=info:doi/10.1007%2Fs10444-022-09991-x&rft.externalDocID=10_1007_s10444_022_09991_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon