Approximation of functions from Korobov spaces by deep convolutional neural networks
The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of m...
Saved in:
Published in | Advances in computational mathematics Vol. 48; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality. |
---|---|
AbstractList | The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality. |
ArticleNumber | 84 |
Author | Mao, Tong Zhou, Ding-Xuan |
Author_xml | – sequence: 1 givenname: Tong surname: Mao fullname: Mao, Tong organization: School of Data Science, City University of Hong Kong – sequence: 2 givenname: Ding-Xuan orcidid: 0000-0003-0224-9216 surname: Zhou fullname: Zhou, Ding-Xuan email: dingxuan.zhou@sydney.edu.au organization: School of Mathematics and Statistics, University of Sydney |
BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz9F8bbI5lqJWLHip57CbJrJ1u1mT3dr-e9OuIHjoaQbmfYaZZwJGjW8sALcE3xOM5UMkmHOOMKUIK6UI2l-AMckkRSoNRqnHRCFJRH4FJjFuMMZKyGwMVrO2DX5fbYuu8g30Drq-Mcc-Qhf8Fr764Eu_g7EtjI2wPMC1tS00vtn5uj8Gixo2tg-n0n378BmvwaUr6mhvfusUvD89ruYLtHx7fpnPlsgwwTokpHBKspyajAtDBSEud7JYU5Xx3GHFsc2NUNYJo4gpKaVOZAUzmBpSUpazKbgb9qYXvnobO73xfUgHRU0ll4pIxmlK5UPKBB9jsE6bqju924WiqjXB-uhQDw51cqhPDvU-ofQf2oakKhzOQ2yAYgo3Hzb8XXWG-gGgvIeX |
CitedBy_id | crossref_primary_10_1016_j_neunet_2024_106702 crossref_primary_10_1016_j_neunet_2024_106922 crossref_primary_10_1016_j_sigpro_2025_109983 crossref_primary_10_1162_neco_a_01650 crossref_primary_10_1016_j_jco_2023_101784 crossref_primary_10_1016_j_ins_2024_120573 crossref_primary_10_1142_S0219530524400013 crossref_primary_10_1016_j_acha_2024_101714 crossref_primary_10_1016_j_neunet_2024_106226 |
Cites_doi | 10.1162/neco.2006.18.7.1527 10.1142/S0219530519400074 10.1007/s11633-017-1054-2 10.1109/TIT.2016.2634401 10.3934/mfc.2022021 10.1016/S0893-6080(05)80131-5 10.1016/j.acha.2019.06.004 10.1016/j.neunet.2020.07.029 10.1142/S0219530518500124 10.1007/BF02070821 10.1109/TNNLS.2018.2868980 10.1016/j.neunet.2021.09.027 10.1016/j.neunet.2020.01.018 10.1137/18M1189336 10.1016/j.neunet.2017.07.002 10.1145/3065386 10.1109/TIT.2018.2874447 10.1017/S0962492904000182 10.1109/TNNLS.2020.3027613 10.1002/047134608X.W8424 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10444-022-09991-x |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_022_09991_x |
GrantInformation_xml | – fundername: University of Sydney |
GroupedDBID | -52 -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c363t-676f97382c546c2611f8f7ad29548f0940e8c69ef6c91cb222f65a3c02c1b2383 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 11:00:27 EDT 2025 Tue Jul 01 02:55:35 EDT 2025 Thu Apr 24 23:07:29 EDT 2025 Fri Feb 21 02:43:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Deep convolutional neural networks Curse of dimensionality Korobov spaces 68T07 41A25 Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-676f97382c546c2611f8f7ad29548f0940e8c69ef6c91cb222f65a3c02c1b2383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0224-9216 |
OpenAccessLink | https://link.springer.com/10.1007/s10444-022-09991-x |
PQID | 2747917342 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_2747917342 crossref_citationtrail_10_1007_s10444_022_09991_x crossref_primary_10_1007_s10444_022_09991_x springer_journals_10_1007_s10444_022_09991_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Feng, Hou, Wei, Zhou (CR6) 2022; 5 Hinton, Osindero, Teh (CR7) 2006; 18 CR19 Yarotsky (CR20) 2017; 94 Poggio, Mhaskar, Rosasco, Miranda, Liao (CR18) 2017; 14 Mao, Shi, Zhou (CR14) 2021; 144 Zhou (CR21) 2020; 48 Klusowski, Barron (CR9) 2018; 64 CR12 Chui, Lin, Zhou (CR3) 2019; 17 Hoefler, Alistarh, Ben-Nun, Dryden, Peste (CR8) 2021; 22 Kohler, Krzyżak (CR10) 2016; 63 Mhaskar (CR15) 1993; 1 Zhou (CR23) 2018; 16 Pinkus (CR17) 1993; 6 Montanelli, Du (CR16) 2019; 1 CR4 Bungartz, Griebel (CR1) 2004; 13 Chui, Lin, Zhang, Zhou (CR2) 2022; 33 CR25 Krizhevsky, Sutskever, Hinton (CR11) 2012; 60 CR24 Lin (CR13) 2019; 30 Zhou (CR22) 2020; 124 Fang, Feng, Huang, Zhou (CR5) 2020; 131 JM Klusowski (9991_CR9) 2018; 64 9991_CR24 9991_CR25 CK Chui (9991_CR3) 2019; 17 H Montanelli (9991_CR16) 2019; 1 T Poggio (9991_CR18) 2017; 14 H-J Bungartz (9991_CR1) 2004; 13 T Hoefler (9991_CR8) 2021; 22 A Pinkus (9991_CR17) 1993; 6 DX Zhou (9991_CR22) 2020; 124 M Kohler (9991_CR10) 2016; 63 T Mao (9991_CR14) 2021; 144 9991_CR4 H Feng (9991_CR6) 2022; 5 HN Mhaskar (9991_CR15) 1993; 1 GE Hinton (9991_CR7) 2006; 18 9991_CR19 DX Zhou (9991_CR21) 2020; 48 Z Fang (9991_CR5) 2020; 131 DX Zhou (9991_CR23) 2018; 16 CK Chui (9991_CR2) 2022; 33 9991_CR12 SB Lin (9991_CR13) 2019; 30 A Krizhevsky (9991_CR11) 2012; 60 D Yarotsky (9991_CR20) 2017; 94 |
References_xml | – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: CR7 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 17 start-page: 737 year: 2019 end-page: 772 ident: CR3 article-title: Deep neural networks for rotation-invariance approximation and learning publication-title: Anal. Appl. doi: 10.1142/S0219530519400074 – ident: CR4 – ident: CR12 – volume: 14 start-page: 503 year: 2017 end-page: 519 ident: CR18 article-title: Why and when can deep—but not shallow—networks avoid the curse of dimensionality: a review publication-title: Internat. J. Automation Comput. doi: 10.1007/s11633-017-1054-2 – volume: 22 start-page: 1 year: 2021 end-page: 124 ident: CR8 article-title: Sparsity in deep learning: Pruning and growth for efficient inference and training in neural networks publication-title: J. Mach. Learn. Res. – volume: 63 start-page: 1620 year: 2016 end-page: 1630 ident: CR10 article-title: Nonparametric regression based on hierarchical interaction models publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2016.2634401 – volume: 5 start-page: 351 year: 2022 end-page: 362 ident: CR6 article-title: CNN models for readability of Chinese texts publication-title: Math. Found. Comp. doi: 10.3934/mfc.2022021 – volume: 6 start-page: 861 year: 1993 end-page: 867 ident: CR17 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80131-5 – volume: 48 start-page: 787 year: 2020 end-page: 794 ident: CR21 article-title: Universality of deep convolutional neural networks publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2019.06.004 – ident: CR25 – volume: 131 start-page: 154 year: 2020 end-page: 162 ident: CR5 article-title: Theory of deep convolutional neural networks II: spherical analysis publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.029 – volume: 16 start-page: 895 year: 2018 end-page: 919 ident: CR23 article-title: Deep distributed convolutional neural networks: universality publication-title: Anal. Appl. doi: 10.1142/S0219530518500124 – volume: 1 start-page: 61 year: 1993 end-page: 80 ident: CR15 article-title: Approximation properties of a multilayered feedforward artificial neural network publication-title: Adv. Comput. Math. doi: 10.1007/BF02070821 – ident: CR19 – volume: 30 start-page: 1392 year: 2019 end-page: 1406 ident: CR13 article-title: Generalization and expressivity for deep nets publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2018.2868980 – volume: 144 start-page: 778 year: 2021 end-page: 790 ident: CR14 article-title: Theory of deep convolutional neural networks III: Approximating radial functions publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.09.027 – volume: 124 start-page: 319 year: 2020 end-page: 327 ident: CR22 article-title: Theory of deep convolutional neural networks: Downsampling publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.01.018 – volume: 1 start-page: 78 year: 2019 end-page: 92 ident: CR16 article-title: New error bounds for deep reLU networks using sparse grids publication-title: SIAM Journal on Mathematics of Data Science doi: 10.1137/18M1189336 – volume: 94 start-page: 103 year: 2017 end-page: 114 ident: CR20 article-title: Error bounds for approximations with deep reLU networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.002 – volume: 60 start-page: 84 year: 2012 end-page: 90 ident: CR11 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 64 start-page: 7649 year: 2018 end-page: 7656 ident: CR9 article-title: Approximation by combinations of reLU and squared reLU ridge functions with ℓ1 and ℓ0 controls publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2018.2874447 – volume: 13 start-page: 147 year: 2004 end-page: 269 ident: CR1 article-title: Sparse grids publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume: 33 start-page: 229 year: 2022 end-page: 243 ident: CR2 article-title: Realization of spatial sparseness by deep reLU nets with massive data publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3027613 – ident: CR24 – volume: 1 start-page: 61 year: 1993 ident: 9991_CR15 publication-title: Adv. Comput. Math. doi: 10.1007/BF02070821 – volume: 13 start-page: 147 year: 2004 ident: 9991_CR1 publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume: 60 start-page: 84 year: 2012 ident: 9991_CR11 publication-title: Commun. ACM doi: 10.1145/3065386 – ident: 9991_CR4 – ident: 9991_CR19 – volume: 18 start-page: 1527 year: 2006 ident: 9991_CR7 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 144 start-page: 778 year: 2021 ident: 9991_CR14 publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.09.027 – volume: 30 start-page: 1392 year: 2019 ident: 9991_CR13 publication-title: IEEE Trans. Neural Netw. Learn Syst. doi: 10.1109/TNNLS.2018.2868980 – volume: 17 start-page: 737 year: 2019 ident: 9991_CR3 publication-title: Anal. Appl. doi: 10.1142/S0219530519400074 – ident: 9991_CR24 doi: 10.1002/047134608X.W8424 – volume: 64 start-page: 7649 year: 2018 ident: 9991_CR9 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2018.2874447 – volume: 131 start-page: 154 year: 2020 ident: 9991_CR5 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.029 – volume: 124 start-page: 319 year: 2020 ident: 9991_CR22 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.01.018 – volume: 22 start-page: 1 year: 2021 ident: 9991_CR8 publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 229 year: 2022 ident: 9991_CR2 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3027613 – volume: 63 start-page: 1620 year: 2016 ident: 9991_CR10 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2016.2634401 – ident: 9991_CR12 – volume: 14 start-page: 503 year: 2017 ident: 9991_CR18 publication-title: Internat. J. Automation Comput. doi: 10.1007/s11633-017-1054-2 – volume: 48 start-page: 787 year: 2020 ident: 9991_CR21 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2019.06.004 – volume: 16 start-page: 895 year: 2018 ident: 9991_CR23 publication-title: Anal. Appl. doi: 10.1142/S0219530518500124 – volume: 94 start-page: 103 year: 2017 ident: 9991_CR20 publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.07.002 – ident: 9991_CR25 – volume: 1 start-page: 78 year: 2019 ident: 9991_CR16 publication-title: SIAM Journal on Mathematics of Data Science doi: 10.1137/18M1189336 – volume: 5 start-page: 351 year: 2022 ident: 9991_CR6 publication-title: Math. Found. Comp. doi: 10.3934/mfc.2022021 – volume: 6 start-page: 861 year: 1993 ident: 9991_CR17 publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80131-5 |
SSID | ssj0009675 |
Score | 2.4198515 |
Snippet | The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Approximation Artificial neural networks Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Mathematical analysis Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Visualization |
Title | Approximation of functions from Korobov spaces by deep convolutional neural networks |
URI | https://link.springer.com/article/10.1007/s10444-022-09991-x https://www.proquest.com/docview/2747917342 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOjBH6gRRdKDN23Ctq7bjoOARAInSPC0rF2bmBhGGBr8721Lx9Soiace1nbJe69938t77yvArUMCQTNf4ExBN0xc1sEp5QS7KWFBmhLeCXTv8HhChzPyOPfntimsKKvdy5Skuak_NbsRQrCuPjeoBivkWPd17K6seObGFdUuNfS6ytYirKKB0LbK_LzHV3dUYcxvaVHjbQYncGRhIoq3ej2FPbFowLGFjMgeyKIBh-Md7WpxBtNYM4RvnrftiCiXSLstY1lI95GgUb7KWf6G1DWiliP2jjIhlkiXnlsTVD_VFJdmMAXixTnMBv1pb4jtswmYe9RbYxpQGQVe6HKfUK4iJEeGMkgzndELpebLEyGnkZCURw5nCiBI6qce77jcYcqDexdQW-QLcQlIdqhgJFOeTnrE40HqSBVwMe6ziEVumDbBKaWXcMsprp-2eEkqNmQt8URJPDESTzZNuNutWW4ZNf6c3SqVktjTVSQ6klZhpkfcJtyXiqo-_77b1f-mX8OBq23FVK-0oLZevYobhUHWrA31eNDtTvT48DTqt2G_R3ttY4gf4lvXIg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD-rBH1NxOjUHbxpYmzRtj2Mo0_04bbBbSdIEBFnHOmX-9-Zl2YpDBU89NEnhvZe-75H3fUHoLmCx5nmkSW6hG2GhbBHBFSOhYDIWgqlWDNzhwZB3x-xlEk28TA5wYbbO74Hixhgj0HPusAyxeHGX2UoZ2vc6vFMJ7HInqmsjLCW2Bkg8QebnNb4noQpZbh2GuhzzdIwOPTjE7ZU3T9COntbRkQeK2G_Dso4OBhux1fIUjdqgC758XZEQcWEwJCsXTxjYI7hXzAtZfGD787DTsfzEudYzDA3nPvDsR0HY0j1cW3h5hsZPj6NOl_jLEoiinC4Ij7lJY5qEKmJc2booMImJRQ7neIkBlTydKJ5qw1UaKGlhgeGRoKoVqkDavE3PUW1aTPUFwqbFtWS5zW-GMqpiERhbZkkVyVSmYSIaKFhbL1NeSRwutHjLKg1ksHhmLZ45i2fLBrrfzJmtdDT-HN1cOyXze6rMoH62xSVlYQM9rB1Vvf59tcv_Db9Fe93RoJ_1n4e9K7QfQty4_pUmqi3m7_raopCFvHHh9wUGqNIH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iIHrwx1ScTs3Bm4atTZq2xzEd07nhYYPdSpImIEg71irzvzdJ23WKCp56aJLCy0vf93jv-wLAtUN8SWNPolhDN0Rc3kGMCoJcRrjPGBEd33CHR2M6mJLHmTdbY_HbbveqJFlwGoxKU5K357FqrxHfCCHIdKJbhIM0itzSmYot1PZor5bdpVZqV_tdiHRmEJS0mZ_X-Bqaarz5rURqI0__AOyVkBF2iz0-BBsyaYD9Ej7C8nBmDbA7WkmwZkdg0jVq4cuXgpoIUwVNCLNeBg2nBA7TRcrTd6h_KXo65B8wlnIOTRt66Y76o0bu0j5ss3h2DKb9-0lvgMorFJDAFOeI-lSFPg5c4REqdLbkqED5LDbVvUAZ7TwZCBpKRUXoCK7BgqIew6LjCofraI5PwGaSJvIUQNWhkpNYRz2FCRY-c5ROvrjweMhDN2BN4FTWi0SpL26uuXiNamVkY_FIWzyyFo-WTXCzmjMv1DX-HN2qNiUqT1oWmaxap5yYuE1wW21U_fr31c7-N_wKbD_f9aOnh_HwHOy4xm1sU0sLbOaLN3mhoUnOL633fQISeNpO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+of+functions+from+Korobov+spaces+by+deep+convolutional+neural+networks&rft.jtitle=Advances+in+computational+mathematics&rft.au=Mao%2C+Tong&rft.au=Zhou%2C+Ding-Xuan&rft.date=2022-12-01&rft.pub=Springer+US&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=48&rft.issue=6&rft_id=info:doi/10.1007%2Fs10444-022-09991-x&rft.externalDocID=10_1007_s10444_022_09991_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |