Approximation of functions from Korobov spaces by deep convolutional neural networks
The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of m...
Saved in:
Published in | Advances in computational mathematics Vol. 48; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The efficiency of deep convolutional neural networks (DCNNs) has been demonstrated empirically in many practical applications. In this paper, we establish a theory for approximating functions from Korobov spaces by DCNNs. It verifies rigorously the efficiency of DCNNs in approximating functions of many variables with some variable structures and their abilities in overcoming the curse of dimensionality. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-022-09991-x |