Boosting as a kernel-based method

Boosting combines weak (biased) learners to obtain effective learning algorithms for classification and prediction. In this paper, we show a connection between boosting and kernel-based methods, highlighting both theoretical and practical applications. In the ℓ 2 context, we show that boosting with...

Full description

Saved in:
Bibliographic Details
Published inMachine learning Vol. 108; no. 11; pp. 1951 - 1974
Main Authors Aravkin, Aleksandr Y., Bottegal, Giulio, Pillonetto, Gianluigi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Boosting combines weak (biased) learners to obtain effective learning algorithms for classification and prediction. In this paper, we show a connection between boosting and kernel-based methods, highlighting both theoretical and practical applications. In the ℓ 2 context, we show that boosting with a weak learner defined by a kernel K is equivalent to estimation with a special boosting kernel . The number of boosting iterations can then be modeled as a continuous hyperparameter, and fit (along with other parameters) using standard techniques. We then generalize the boosting kernel to a broad new class of boosting approaches for general weak learners, including those based on the ℓ 1 , hinge and Vapnik losses. We develop fast hyperparameter tuning for this class, which has a wide range of applications including robust regression and classification. We illustrate several applications using synthetic and real data.
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-019-05797-z