Brca1 and Brca2 expression patterns in mitotic and meiotic cells of mice

The mouse homologues of the breast cancer susceptibility genes, Brca1 and Brca2, are expressed in a cell cycle-dependent fashion in vitro and appear to be regulated by similar or overlapping pathways. Therefore, we compared the non isotopic in situ hybridization expression patterns of Brca1 and Brca...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 16; no. 1; pp. 61 - 68
Main Authors Blackshear, P E, Goldsworthy, S M, Foley, J F, McAllister, K A, Bennett, L M, Collins, N K, Bunch, D O, Brown, P, Wiseman, R W, Davis, B J
Format Journal Article
LanguageEnglish
Published England 08.01.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mouse homologues of the breast cancer susceptibility genes, Brca1 and Brca2, are expressed in a cell cycle-dependent fashion in vitro and appear to be regulated by similar or overlapping pathways. Therefore, we compared the non isotopic in situ hybridization expression patterns of Brca1 and Brca2 mRNA in vivo in mitotic and meiotic cells during mouse embryogenesis, mammary gland development, and in adult tissues including testes, ovaries, and hormonally altered ovaries. Brca1 and Brca2 are expressed concordantly in proliferating cells of embryos, and the mammary gland undergoing morphogenesis and in most adult tissues. The expression pattern of Brca1 and Brca2 correlates with the localization of proliferating cell nuclear antigen, an indicator of proliferative activity. In the ovary, Brca1 and Brca2 exhibited a comparable hormone-independent pattern of expression in oocytes, granulosa cells and thecal cells of developing follicles. In the testes, Brca1 and Brca2 were expressed in mitotic spermatogonia and early meiotic prophase spermatocytes. Northern analyses of prepubertal mouse testes revealed that the time course of Brca2 expression was delayed in spermatogonia relative to Brca1. Thus, while Brca1 and Brca2 share concordant cell-specific patterns of expression in most proliferating tissues, these observations suggest that they may have distinct roles during meiosis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0950-9232
1476-5594
DOI:10.1038/sj.onc.1201506