Analysis of the Variation Characteristics of Rock Mechanical Parameters and Slope Stability Under Freeze-Thaw Cycles

In high-altitude cold regions, significant diurnal and seasonal temperature variations intensify freeze-thaw damage to rocks, critically impacting slope stability. This study examines a Xinjiang mine slope to assess freeze-thaw effects through laboratory experiments on three lithologies under varyin...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 15; no. 11; p. 5898
Main Authors Tan, Wenhui, Li, Zelong, Li, Zhentao, Sothy, Em, Wu, Siying, Guo, Qifeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In high-altitude cold regions, significant diurnal and seasonal temperature variations intensify freeze-thaw damage to rocks, critically impacting slope stability. This study examines a Xinjiang mine slope to assess freeze-thaw effects through laboratory experiments on three lithologies under varying freeze-thaw cycles. Mechanical parameters were determined via the Hoek–Brown criterion, and FLAC3D simulations analyzed stress-deformation characteristics and safety factor trends, validated against field monitoring. After 90 cycles, the results show progressive degradation: uniaxial compressive strength declined by 29.7–45.8%, elastic modulus by 42.7–63.3%, Poisson’s ratio by 16.0–42.1%, cohesion by 71.7–77.1%, internal friction angle by ~52.0%, and tensile strength by 79.3–83.6%. The slope safety factor decreased exponentially (44.5% reduction). Both simulations and monitoring revealed “step-like” displacement growth, with minor discrepancies attributed to modeling assumptions. These findings provide critical insights for safe mining operations in cold regions, highlighting the severe mechanical deterioration induced by freeze-thaw cycles and its implications for slope stability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app15115898