Three-dimensional hierarchical porous carbon derived from natural resources for highly efficient treatment of polluted water

Background Dealing with the ever-increasing water pollution has become an urgent global problem, especially the organic containing polluted water. Physical adsorption has become one of the most popular ways for removal of organic dyes from wastewater due to its low cost as well as high efficiency. H...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental sciences Europe Vol. 33; no. 1
Main Authors Li, Jiaxin, Holze, Rudolf, Moyo, Simbarashe, Wang, Song, Li, Sanxi, Tang, Tao, Chen, Xuecheng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background Dealing with the ever-increasing water pollution has become an urgent global problem, especially the organic containing polluted water. Physical adsorption has become one of the most popular ways for removal of organic dyes from wastewater due to its low cost as well as high efficiency. However, the adsorption performance is still limited by the low specific surface area (SSA) and unsuitable pore size. Hence, it is still a challenge to synthesize active carbon (AC) with high SSA, suitable pore size distribution as well as low cost for polluted water treatment. Here, we report an efficient method to prepare AC with large SSA from jujube for removal of both cationic dye and anionic dye from aqueous solution. The present results demonstrate that biomass-derived hierarchical porous carbon has a real potential application for wastewater treatment. Results The as-prepared hierarchical porous structure carbon material (PC-500-6) shows a high specific surface area (3203 m 2 /g) and pore size distribution in the range 0.8 to 3.0 nm, while exhibiting an enhanced adsorption performance for both methylene blue (MB) and methylene orange (MO) from an aqueous solution. The maximum adsorption capacity even reaches 925.93 mg/g and 1281.39 mg/g for MB and MO, which was calculated from Langmuir model. Through analysis of the adsorption data, it was found that the corresponding adsorption kinetic fits the pseudo-second-order model very well. Conclusions It can be concluded that the adsorption of MB has a strong correlation with SSA, pore size distribution as well as the pore volume. The present study paved a practical way for wastewater treatment by using biomass-derived hierarchical porous carbon.
ISSN:2190-4707
2190-4715
DOI:10.1186/s12302-021-00527-6