An unconventional robust integrator for dynamical low-rank approximation

We propose and analyse a numerical integrator that computes a low-rank approximation to large time-dependent matrices that are either given explicitly via their increments or are the unknown solution to a matrix differential equation. Furthermore, the integrator is extended to the approximation of t...

Full description

Saved in:
Bibliographic Details
Published inBIT Vol. 62; no. 1; pp. 23 - 44
Main Authors Ceruti, Gianluca, Lubich, Christian
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose and analyse a numerical integrator that computes a low-rank approximation to large time-dependent matrices that are either given explicitly via their increments or are the unknown solution to a matrix differential equation. Furthermore, the integrator is extended to the approximation of time-dependent tensors by Tucker tensors of fixed multilinear rank. The proposed low-rank integrator is different from the known projector-splitting integrator for dynamical low-rank approximation, but it retains the important robustness to small singular values that has so far been known only for the projector-splitting integrator. The new integrator also offers some potential advantages over the projector-splitting integrator: It avoids the backward time integration substep of the projector-splitting integrator, which is a potentially unstable substep for dissipative problems. It offers more parallelism, and it preserves symmetry or anti-symmetry of the matrix or tensor when the differential equation does. Numerical experiments illustrate the behaviour of the proposed integrator.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0006-3835
1572-9125
DOI:10.1007/s10543-021-00873-0