Techno-economic and environmental design of an optimal hybrid energy system for a community multimedia centre in Cameroon
Hybrid Renewable Energy System is a very good solution to the energy deficit encounter in developing countries. The paper presents the optimal design of a hybrid renewable energy system regarding the technical aspect that is Loss of Power Supply Probability (LPSP), economic aspect that is Cost of El...
Saved in:
Published in | SN applied sciences Vol. 3; no. 1; p. 127 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Hybrid Renewable Energy System is a very good solution to the energy deficit encounter in developing countries. The paper presents the optimal design of a hybrid renewable energy system regarding the technical aspect that is Loss of Power Supply Probability (LPSP), economic aspect that is Cost of Electricity (COE) and Net Present Cost (NPC) and environmental aspect that is Total Greenhouse gases emission (TGE) aspects using a multi-objective Particle Swarm Optimization algorithm for a Community multimedia center in MAKENENE, Cameroon. Optimal configurations including Photovoltaic (PV), Wind, Battery and Diesel generator (DG), separated into Scenarios 1–7 of hybrid energy systems are tested to have the most appropriate Scenario. Scenario 3 (Hybrid system with PV, Battery and DG) with Loss of Power Supply Probability, Cost of Electricity, Net Present Cost and Emission of 0.003%, 0.132 $/kWh, 38,817.7 $ and 2.2 kg/year respectively is found to be the most appropriate for the Community multimedia center. |
---|---|
ISSN: | 2523-3963 2523-3971 |
DOI: | 10.1007/s42452-021-04151-0 |