Extinction and stationary distribution of a novel SIRS epidemic model with general incidence rate and Ornstein–Uhlenbeck process
We propose, in this paper, a novel stochastic SIRS epidemic model to characterize the effect of uncertainty on the distribution of infectious disease, where the general incidence rate and Ornstein–Uhlenbeck process are also introduced to describe the complexity of disease transmission. First, the ex...
Saved in:
Published in | Advances in continuous and discrete models Vol. 2024; no. 1; p. 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
25.07.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2731-4235 1687-1839 2731-4235 1687-1847 |
DOI | 10.1186/s13662-024-03821-8 |
Cover
Loading…
Summary: | We propose, in this paper, a novel stochastic SIRS epidemic model to characterize the effect of uncertainty on the distribution of infectious disease, where the general incidence rate and Ornstein–Uhlenbeck process are also introduced to describe the complexity of disease transmission. First, the existence and uniqueness of the global nonnegative solution of our model is obtained, which is the basis for the discussion of the dynamical behavior of the model. And then, we derive a sufficient condition for exponential extinction of infectious diseases. Furthermore, through constructing a Lyapunov function and using Fatou’s lemma, we obtain a sufficient criterion for the existence and ergodicity of a stationary distribution, which implies the persistence of the disease. In addition, the specific form of the density function of the model near the quasiendemic equilibrium is proposed by solving the corresponding Fokker–Planck equation and using some relevant algebraic equation theory. Finally, we explain the above theoretical results through some numerical simulations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2731-4235 1687-1839 2731-4235 1687-1847 |
DOI: | 10.1186/s13662-024-03821-8 |