A Bayesian approach to data-driven multi-stage stochastic optimization

Aimed at sufficiently utilizing available data and prior distribution information, we introduce a data-driven Bayesian-type approach to solve multi-stage convex stochastic optimization, which can easily cope with the uncertainty about data process’s distributions and their inter-stage dependence. To...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 90; no. 2; pp. 401 - 428
Main Authors Chen, Zhiping, Ma, Wentao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aimed at sufficiently utilizing available data and prior distribution information, we introduce a data-driven Bayesian-type approach to solve multi-stage convex stochastic optimization, which can easily cope with the uncertainty about data process’s distributions and their inter-stage dependence. To unravel the properties of the proposed multi-stage Bayesian expectation optimization (BEO) problem, we establish the consistency of optimal value functions and solutions. Two kinds of algorithms are designed for the numerical solution of single-stage and multi-stage BEO problems, respectively. A queuing system and a multi-stage inventory problem are adopted to numerically demonstrate the advantages and practicality of the new framework and corresponding solution methods, compared with the usual formulations and solution methods for stochastic optimization problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-024-01410-3