Combining advanced magnetic resonance imaging (MRI) with finite element (FE) analysis for characterising subject-specific injury patterns in the brain after traumatic brain injury

Traumatic brain injury (TBI) is a leading cause of death and disability. The way mechanical impact is transferred to the brain has been shown to be a major determinant for structural damage and subsequent pathological sequalae. Although finite element (FE) models have been used extensively in the in...

Full description

Saved in:
Bibliographic Details
Published inEngineering with computers Vol. 38; no. 5; pp. 3925 - 3937
Main Authors Shim, Vickie, Tayebi, Maryam, Kwon, Eryn, Guild, Sarah-Jane, Scadeng, Miriam, Dubowitz, David, McBryde, Fiona, Rosset, Samuel, Wang, Alan, Fernandez, Justin, Li, Shaofan, Holdsworth, Samantha
Format Journal Article
LanguageEnglish
Published London Springer London 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Traumatic brain injury (TBI) is a leading cause of death and disability. The way mechanical impact is transferred to the brain has been shown to be a major determinant for structural damage and subsequent pathological sequalae. Although finite element (FE) models have been used extensively in the investigation of various aspects of TBI and have been instrumental in characterising a TBI injury threshold and the pattern of diffuse axonal injuries, subject-specific analysis has been difficult to perform due to the complexity of brain structures and its material properties. We have developed an efficient computational pipeline that can generate subject-specific FE models of the brain made up of conforming hexahedral elements directly from advanced MRI scans. This pipeline was applied and validated in our sheep model of TBI. Our FE model of the sheep brain accurately predicted the damage pattern seen on post-impact MRI scans. Furthermore, our model also showed a complex time-varying strain distribution pattern, which was not present in the homogeneous model without subject-specific material descriptions. To our knowledge, this is the first fully subject-specific FE model of the sheep brain able to predict structural damage after a head impact. The pipeline developed has the potential to augment the analysis of human brain MRI scans to detect changes in brain structures and function after TBI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0177-0667
1435-5663
DOI:10.1007/s00366-022-01697-4