Reynolds-number scaling of wall-pressure–velocity correlations in wall-bounded turbulence
Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the...
Saved in:
Published in | Journal of fluid mechanics Vol. 981 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
21.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$. Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$, the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$, and $p_w$ and $v$, respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers. |
---|---|
AbstractList | Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range$Re_\tau \approx 550\unicode{x2013}5200$. Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of$\lambda _x/y \approx 14$(and$\lambda _x/y \approx 8$for the wall-normal velocity). When extending the analysis to both homogeneous directions in$x$and$y$, the peak coherence is centred at$\lambda _x/\lambda _z \approx 2$and$\lambda _x/\lambda _z \approx 1$for$p_w$and$u$, and$p_w$and$v$, respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of$Re_\tau \approx 2$k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of$\approx$0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers. Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$. Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$, the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$, and $p_w$ and $v$, respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers. Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$ . Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$ , the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$ , and $p_w$ and $v$ , respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$ k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$ 0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers. |
ArticleNumber | A15 |
Author | Baars, Woutijn J. Lee, Myoungkyu Dacome, Giulio |
Author_xml | – sequence: 1 givenname: Woutijn J. orcidid: 0000-0003-1526-3084 surname: Baars fullname: Baars, Woutijn J. email: w.j.baars@tudelft.nl organization: 1Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands – sequence: 2 givenname: Giulio orcidid: 0009-0000-3088-2495 surname: Dacome fullname: Dacome, Giulio organization: 1Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands – sequence: 3 givenname: Myoungkyu orcidid: 0000-0002-5647-6265 surname: Lee fullname: Lee, Myoungkyu email: w.j.baars@tudelft.nl organization: 2Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA |
BackLink | https://www.osti.gov/servlets/purl/2581374$$D View this record in Osti.gov |
BookMark | eNp10M9qGzEQBnBRXKjt9NQXWJJjWFf_vKs9lpA0AUOhpKcehDQ7ctfIkiPtJvjWd-gb5kmyjgOFkJzm8pvhm29GJiEGJOQLowtGWf1147YLTrlcyOoDmTJZNWVdyeWETCnlvGSM009klvOGUiZoU0_J75-4D9G3uQzD1mIqMhjfhXURXfFgvC93CXMeEj7-_XePPkLX7wuIKaE3fRdDLrpwhDYOocW26IdkB48B8IR8dMZn_Pwy5-TX1eXtxXW5-vH95uLbqgRRib6Uwi1ba7DhUlEUlWWCWcXbuhXK1cY6sC0FKqEBaMY3wRjVoALmgNZOKTEnp8e7MfedzmNEhD8QQ0DoNV8qJmo5orMj2qV4N2Du9SYOKYy5NG-4qpdVxQ6KHRWkmHNCp8drz4_2yXReM6oPReuxaH0oWstq3Dl_tbNL3dak_Tu6fNFma1PXrvF_kLf8E99bkwQ |
CitedBy_id | crossref_primary_10_1103_PhysRevFluids_9_104607 crossref_primary_10_1080_14685248_2024_2412586 crossref_primary_10_1063_5_0216465 crossref_primary_10_1103_PhysRevFluids_9_114610 crossref_primary_10_1017_jfm_2024_1218 |
Cites_doi | 10.1017/S0022112094000431 10.1017/jfm.2019.391 10.1103/PhysRevFluids.2.094604 10.1017/jfm.2021.339 10.2514/6.2004-681 10.1103/PhysRevFluids.1.081501 10.1146/annurev-fluid-122109-160753 10.1017/jfm.2014.261 10.1017/S0022112090001057 10.1017/jfm.2011.19 10.1121/1.4976341 10.1017/jfm.2015.158 10.1017/jfm.2013.501 10.1017/S0022112088001442 10.1017/S0022112007005502 10.1017/S0022112095000978 10.1103/PhysRevFluids.9.064602 10.1007/s00348-006-0199-5 10.1016/j.ijheatfluidflow.2017.05.003 10.1016/j.jsv.2008.06.002 10.1017/S0022112009006946 10.1121/1.380596 10.1017/S0022112009007721 10.1103/PhysRevFluids.8.064612 10.1121/1.1907235 10.1017/S0022112010006245 10.1017/jfm.2020.48 10.1063/1.869789 10.1017/jfm.2018.903 10.1063/1.862515 10.1063/1.858179 10.1098/rsta.2010.0362 10.1017/S0022112003006177 10.1146/annurev.fl.07.010175.000305 10.2514/2.526 10.1088/0169-5983/41/2/021404 10.1017/S0022112083003389 10.1080/14685248.2016.1181266 10.1017/S002211208300049X 10.1063/1.4774337 10.1103/PhysRevFluids.6.014604 10.1017/jfm.2016.12 10.1017/S0022112009991029 10.1017/jfm.2017.357 10.1063/1.1389284 10.2514/2.296 10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2 10.1017/S0022112008002747 10.1016/j.apacoust.2020.107504 10.1007/978-94-011-4601-2_33 10.2514/2.2035 10.1103/PhysRevFluids.1.014401 10.1007/BF01893301 10.1017/jfm.2018.553 10.1017/jfm.2020.139 10.1017/jfm.2021.812 10.1017/jfm.2019.834 10.1017/jfm.2021.180 10.1017/jfm.2015.268 10.1063/1.5047537 10.1017/jfm.2021.736 10.1017/S002211209700815X 10.1017/S0022112007006076 10.1017/S0022112008002541 10.1146/annurev.fluid.010908.165221 10.1063/1.4879255 10.1063/1.1570830 10.1088/0957-0233/21/10/105404 10.1063/1.4974354 10.1063/1.857396 |
ContentType | Journal Article |
Copyright | The Author(s), 2024. Published by Cambridge University Press. The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2024. Published by Cambridge University Press. – notice: The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF) |
DBID | IKXGN AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W OIOZB OTOTI |
DOI | 10.1017/jfm.2024.46 |
DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
ExternalDocumentID | 2581374 10_1017_jfm_2024_46 |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 4.4 5GY 5VS 74X 74Y 7~V 8G5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV BBLKV BENPR BGHMG BHPHI BLZWO BMAJL C0O CBIIA CCQAD CFAFE CHEAL CJCSC CS3 DOHLZ DU5 E.L EBS F5P HCIFZ HG- HST HZ~ I.6 IH6 IKXGN IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L98 LW7 M-V M2O NIKVX O9- OYBOY P2P PYCCK RAMDC RCA RNS ROL RR0 S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 29K 88I 8FE 8FG 8FH 8R4 8R5 AAYXX ABUWG ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFKRA AFZFC AKMAY AZQEC BGLVJ BKSAR BPHCQ CCPQU CITATION D-I DWQXO GNUQQ GUQSH L6V LK5 M2P M7R M7S P62 PCBAR PHGZM PHGZT PQQKQ PROAC PTHSS Q2X S0W 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U OIOZB OTOTI PUEGO |
ID | FETCH-LOGICAL-c363t-43f5dbae92480e36b131b82d7d38f7abfcbd0c04c9cc9101caa89e8c1fc07f883 |
IEDL.DBID | IKXGN |
ISSN | 0022-1120 |
IngestDate | Mon Sep 01 02:23:05 EDT 2025 Sat Aug 16 19:41:29 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Jul 01 03:01:43 EDT 2025 Wed Mar 13 05:48:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | turbulent boundary layers boundary layer structure turbulence control |
Language | English |
License | http://creativecommons.org/licenses/by/4.0This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c363t-43f5dbae92480e36b131b82d7d38f7abfcbd0c04c9cc9101caa89e8c1fc07f883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-06CH11357 USDOE None |
ORCID | 0000-0003-1526-3084 0009-0000-3088-2495 0000-0002-5647-6265 0000000256476265 0009000030882495 0000000315263084 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0022112024000466/type/journal_article |
PQID | 2928756614 |
PQPubID | 34769 |
PageCount | 36 |
ParticipantIDs | osti_scitechconnect_2581374 proquest_journals_2928756614 crossref_citationtrail_10_1017_jfm_2024_46 crossref_primary_10_1017_jfm_2024_46 cambridge_journals_10_1017_jfm_2024_46 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-21 |
PublicationDateYYYYMMDD | 2024-02-21 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge – name: United States |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2024 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2011; 676 2021; 926 2007; 585 2009; 41 2021; 928 2013; 25 2017; 2 2007; 580 1988; 190 2023; 8 1975; 57 2014; 26 2003; 15 2020; 888 2020; 882 1998; 358 2009; 635 2009; 319 2011; 673 2011; 369 2010; 21 1990; 218 2021; 916 2021; 918 2015; 774 2020; 890 1994; 262 2020; 170 2015; 771 2018; 852 2009; 640 2019; 873 2018; 30 1995; 287 1953; 25 1975; 7 1979; 22 2001; 13 1998; 10 2003; 41 2016; 790 1996; 22 1991; 3 2021; 6 1983; 134 1989; 1 1971; 28 2008; 609 2017; 67 2017; 29 2016; 17 2019; 860 2003; 495 2014; 750 2017; 823 1983; 128 2009; 628 2006; 41 2016; 1 2013; 735 2011; 43 2008; 611 2017; 141 1998; 36 Panton (S0022112024000466_ref53) 2017; 2 Thomas (S0022112024000466_ref65) 1983; 128 Farabee (S0022112024000466_ref24) 1991; 3 S0022112024000466_ref18 Lee (S0022112024000466_ref40) 1998; 358 Renard (S0022112024000466_ref58) 2016; 790 Hutchins (S0022112024000466_ref33) 2009; 635 del Álamo (S0022112024000466_ref20) 2009; 640 Perry (S0022112024000466_ref55) 1990; 218 Schoppa (S0022112024000466_ref60) 1998; 10 Qiao (S0022112024000466_ref56) 2018; 30 Tsuji (S0022112024000466_ref67) 2007; 585 Naka (S0022112024000466_ref51) 2015; 771 Orszag (S0022112024000466_ref52) 1971; 28 Smits (S0022112024000466_ref64) 2011; 676 Mathis (S0022112024000466_ref45) 2009; 628 Lee (S0022112024000466_ref42) 2019; 860 Baidya (S0022112024000466_ref10) 2017; 29 Hultmark (S0022112024000466_ref31) 2010; 21 Cui (S0022112024000466_ref17) 2021; 6 Baars (S0022112024000466_ref8) 2014; 26 Naguib (S0022112024000466_ref49) 1996; 22 Baars (S0022112024000466_ref6) 2017; 823 Smits (S0022112024000466_ref63) 2011; 43 Schewe (S0022112024000466_ref59) 1983; 134 Hamilton (S0022112024000466_ref30) 1995; 287 Panton (S0022112024000466_ref54) 1975; 57 Madhusudanan (S0022112024000466_ref44) 2019; 873 Chauhan (S0022112024000466_ref12) 2009; 41 Choi (S0022112024000466_ref16) 2011; 369 S0022112024000466_ref48 Guezennec (S0022112024000466_ref29) 1989; 1 Klewicki (S0022112024000466_ref38) 2008; 609 Schultz (S0022112024000466_ref61) 2007; 580 Liu (S0022112024000466_ref43) 2020; 888 Gravante (S0022112024000466_ref27) 1998; 36 del Álamo (S0022112024000466_ref19) 2003; 15 Kasagi (S0022112024000466_ref37) 2009; 41 Lasagna (S0022112024000466_ref39) 2013; 25 Rathnasingham (S0022112024000466_ref57) 2003; 495 Jiménez (S0022112024000466_ref36) 2008; 611 Van Blitterswyk (S0022112024000466_ref68) 2017; 141 Merino-Martínez (S0022112024000466_ref46) 2020; 170 Zhang (S0022112024000466_ref71) 2016; 1 Canton (S0022112024000466_ref11) 2016; 1 Baars (S0022112024000466_ref7) 2020; 882 Chernyshenko (S0022112024000466_ref13) 2021; 916 Adrian (S0022112024000466_ref3) 1988; 190 Hutchins (S0022112024000466_ref32) 2011; 673 Gibeau (S0022112024000466_ref26) 2021; 918 Guastoni (S0022112024000466_ref28) 2021; 928 Abbassi (S0022112024000466_ref1) 2017; 67 S0022112024000466_ref4 Deng (S0022112024000466_ref21) 2016; 17 Hwang (S0022112024000466_ref34) 2009; 319 Bai (S0022112024000466_ref9) 2014; 750 Ingard (S0022112024000466_ref35) 1953; 25 Deshpande (S0022112024000466_ref22) 2020; 890 Lee (S0022112024000466_ref41) 2015; 774 Ghaemi (S0022112024000466_ref25) 2013; 735 Choi (S0022112024000466_ref15) 1998; 36 Adrian (S0022112024000466_ref2) 1979; 22 Smits (S0022112024000466_ref62) 2021; 926 Choi (S0022112024000466_ref14) 1994; 262 Naguib (S0022112024000466_ref50) 2001; 13 Arun (S0022112024000466_ref5) 2023; 8 Willmarth (S0022112024000466_ref69) 1975; 7 Murray (S0022112024000466_ref47) 2003; 41 Yao (S0022112024000466_ref70) 2018; 852 S0022112024000466_ref23 Tinney (S0022112024000466_ref66) 2006; 41 |
References_xml | – volume: 882 start-page: A25 year: 2020 article-title: Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra publication-title: J. Fluid Mech. – volume: 676 start-page: 41 year: 2011 end-page: 53 article-title: Spatial resolution correction for wall-bounded turbulence measurements publication-title: J. Fluid Mech. – volume: 928 start-page: A27 year: 2021 article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities publication-title: J. Fluid Mech. – volume: 21 start-page: 105404 year: 2010 article-title: Temperature corrections for constant temperature and constant current hot-wire anemometers publication-title: Meas. Sci. Technol. – volume: 585 start-page: 1 year: 2007 end-page: 40 article-title: Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers publication-title: J. Fluid Mech. – volume: 141 start-page: 1257 issue: 2 year: 2017 end-page: 1268 article-title: An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers publication-title: J. Acoust. Soc. Am. – volume: 609 start-page: 195 year: 2008 end-page: 220 article-title: Statistical structure of the fluctuating wall pressure and its in-plane gradients at high Reynolds number publication-title: J. Fluid Mech. – volume: 43 start-page: 353 year: 2011 end-page: 375 article-title: High Reynolds number wall turbulence publication-title: Annu. Rev. Fluid Mech. – volume: 8 start-page: 064612 year: 2023 article-title: Towards real-time reconstruction of velocity fluctuations in turbulent channel flow publication-title: Phys. Rev. Fluids – volume: 7 start-page: 13 year: 1975 end-page: 36 article-title: Pressure fluctuations beneath turbulent boundary layers publication-title: Annu. Rev. Fluid Mech. – volume: 6 start-page: 014604 year: 2021 article-title: Biphase as a diagnostic for scale interactions in wall-bounded turbulence publication-title: Phys. Rev. Fluids – volume: 873 start-page: 89 year: 2019 end-page: 109 article-title: Coherent large-scale structures from the linearized Navier–Stokes equations publication-title: J. Fluid Mech. – volume: 860 start-page: 886 year: 2019 end-page: 938 article-title: Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number publication-title: J. Fluid Mech. – volume: 41 start-page: 763 issue: 5 year: 2006 end-page: 775 article-title: On spectral linear stochastic estimation publication-title: Exp. Fluids – volume: 190 start-page: 531 year: 1988 end-page: 559 article-title: Stochastic estimation of organized turbulent structure: homogeneous shear flow publication-title: J. Fluid Mech. – volume: 918 start-page: A18 year: 2021 article-title: Low- and mid-frequency wall-pressure sources in a turbulent boundary layer publication-title: J. Fluid Mech. – volume: 673 start-page: 255 year: 2011 end-page: 285 article-title: Three-dimensional conditional structure of a high Reynolds number turbulent boundary layer publication-title: J. Fluid Mech. – volume: 25 start-page: 017101 year: 2013 article-title: Multi-time delay, multi-point linear stochastic estimation of a cavity shear layer velocity from wall-pressure measurements publication-title: Phys. Fluids – volume: 495 start-page: 209 year: 2003 end-page: 233 article-title: Active control of turbulent boundary layers publication-title: J. Fluid Mech. – volume: 67 start-page: 30 year: 2017 end-page: 41 article-title: Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures publication-title: Intl J. Heat Fluid Flow – volume: 890 start-page: R2 year: 2020 article-title: Two-dimensional cross-spectrum of the streamwise velocity in turbulent boundary layers publication-title: J. Fluid Mech. – volume: 926 start-page: A31 year: 2021 article-title: Reynolds stress scaling in the near-wall region of wall-bounded flows publication-title: J. Fluid Mech. – volume: 852 start-page: 678 year: 2018 end-page: 709 article-title: Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing publication-title: J. Fluid Mech. – volume: 774 start-page: 395 year: 2015 end-page: 415 article-title: Direct numerical simulation of turbulent channel flow up to $Re_\tau = 5200$ publication-title: J. Fluid Mech. – volume: 10 start-page: 1049 issue: 5 year: 1998 end-page: 1051 article-title: A large-scale control strategy for drag reduction in turbulent boundary layers publication-title: Phys. Fluids – volume: 3 start-page: 2410 issue: 10 year: 1991 end-page: 2420 article-title: Spectral features of wall pressure fluctuations beneath turbulent boundary layers publication-title: Phys. Fluids A – volume: 128 start-page: 283 year: 1983 end-page: 322 article-title: On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer publication-title: J. Fluid Mech. – volume: 640 start-page: 5 year: 2009 end-page: 26 article-title: Estimation of turbulent convection velocites and corrections to Taylor's approximation publication-title: J. Fluid Mech. – volume: 611 start-page: 215 year: 2008 end-page: 236 article-title: Turbulent fluctuations above the buffer layer of wall-bounded flows publication-title: J. Fluid Mech. – volume: 580 start-page: 381 year: 2007 end-page: 405 article-title: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime publication-title: J. Fluid Mech. – volume: 888 start-page: A32 year: 2020 article-title: An input–output based analysis of convective velocity in turbulent channels publication-title: J. Fluid Mech. – volume: 26 start-page: 055112 year: 2014 article-title: Proper orthogonal decomposition-based spectral higher-order stochastic estimation publication-title: Phys. Fluids – volume: 369 start-page: 1443 year: 2011 end-page: 1458 article-title: Turbulent boundary-layer control with plasma actuators publication-title: Phil. Trans. R. Soc. A – volume: 36 start-page: 1808 issue: 10 year: 1998 end-page: 1816 article-title: Characterization of the pressure fluctuations under a fully developed turbulent boundary layer publication-title: AIAA J. – volume: 36 start-page: 1157 issue: 7 year: 1998 end-page: 1163 article-title: Turbulent boundary-layer control by means of spanwise-wall oscillation publication-title: AIAA J. – volume: 15 start-page: L41 issue: 6 year: 2003 end-page: L44 article-title: Spectra of the very large anisotropic scales in turbulent channels publication-title: Phys. Fluids – volume: 916 start-page: A52 year: 2021 article-title: Extension of QSQH theory of scale interaction in near-wall turbulence to all velocity components publication-title: J. Fluid Mech. – volume: 28 start-page: 1074 issue: 6 year: 1971 end-page: 1074 article-title: On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components publication-title: J. Atmos. Sci. – volume: 628 start-page: 311 year: 2009 end-page: 337 article-title: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers publication-title: J. Fluid Mech. – volume: 41 start-page: 231 year: 2009 end-page: 251 article-title: Microelectromechanical systems-based feedback control of turbulence for skin friction reduction publication-title: Annu. Rev. Fluid Mech. – volume: 2 start-page: 094604 year: 2017 article-title: Correlation of pressure fluctuations in turbulent wall layers publication-title: Phys. Rev. Fluids – volume: 1 start-page: 014401 year: 2016 article-title: Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence publication-title: Phys. Rev. Fluids – volume: 358 start-page: 245 year: 1998 end-page: 258 article-title: Suboptimal control of turbulent channel flow for drag reduction publication-title: J. Fluid Mech. – volume: 13 start-page: 2611 issue: 9 year: 2001 end-page: 2626 article-title: Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer publication-title: Phys. Fluids – volume: 30 start-page: 115101 year: 2018 article-title: Turbulent boundary layer manipulation under a proportional-derivative closed-loop scheme publication-title: Phys. Fluids – volume: 750 start-page: 316 year: 2014 end-page: 354 article-title: Active control of a turbulent boundary layer based on local surface perturbation publication-title: J. Fluid Mech. – volume: 635 start-page: 103 year: 2009 end-page: 136 article-title: Hot-wire spatial resolution issues in wall-bounded turbulence publication-title: J. Fluid Mech. – volume: 771 start-page: 624 year: 2015 end-page: 675 article-title: Space–time pressure–velocity correlations in a turbulent boundary layer publication-title: J. Fluid Mech. – volume: 319 start-page: 199 year: 2009 end-page: 217 article-title: Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra publication-title: J. Sound Vib. – volume: 22 start-page: 2065 issue: 11 year: 1979 end-page: 2070 article-title: Conditional eddies in isotropic turbulence publication-title: Phys. Fluids – volume: 823 start-page: R2 year: 2017 article-title: Self-similarity of wall-attached turbulence in boundary layers publication-title: J. Fluid Mech. – volume: 1 start-page: 081501 year: 2016 article-title: Reynolds number dependence of large-scale friction control in turbulent channel flow publication-title: Phys. Rev. Fluids – volume: 287 start-page: 317 year: 1995 end-page: 348 article-title: Regeneration mechanisms of near-wall turbulence structures publication-title: J. Fluid Mech. – volume: 735 start-page: 381 year: 2013 end-page: 426 article-title: Turbulent structure of high-amplitude pressure peaks within the turbulent boundary layer publication-title: J. Fluid Mech. – volume: 170 start-page: 107504 year: 2020 article-title: Aeroacoustic design and characterization of the 3D-printed, open-jet, anechoic wind tunnel of Delft University of Technology publication-title: Appl. Acoust. – volume: 134 start-page: 311 year: 1983 end-page: 328 article-title: On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow publication-title: J. Fluid Mech. – volume: 17 start-page: 758 issue: 8 year: 2016 end-page: 786 article-title: Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at $Re_\tau = 1000$ publication-title: J. Turbul. – volume: 41 start-page: 969 issue: 5 year: 2003 end-page: 972 article-title: Estimation of the flowfield from surface pressure measurements in an open cavity publication-title: AIAA J. – volume: 22 start-page: 14 year: 1996 end-page: 22 article-title: Extraction of turbulent wall-pressure time-series using an optimal filtering scheme publication-title: Exp. Fluids – volume: 29 start-page: 020712 year: 2017 article-title: Distance-from-the-wall scaling of turbulent motions in wall-bounded flows publication-title: Phys. Fluids – volume: 57 start-page: 1533 issue: 6 year: 1975 end-page: 1535 article-title: Resonant frequencies of cylindrical Helmholtz resonators publication-title: J. Acoust. Soc. Am. – volume: 262 start-page: 75 year: 1994 end-page: 110 article-title: Active turbulence control for drag reduction in wall-bounded flows publication-title: J. Fluid Mech. – volume: 25 start-page: 1037 issue: 6 year: 1953 end-page: 1061 article-title: On the theory and design of acoustic resonators publication-title: J. Acoust. Soc. Am. – volume: 1 start-page: 1054 issue: 6 year: 1989 end-page: 1060 article-title: Stochastic estimation of coherent structures in turbulent boundary layers publication-title: Phys. Fluids A – volume: 41 start-page: 021404 year: 2009 article-title: Criteria for assessing experiments in zero pressure gradient boundary layers publication-title: Fluid Dyn. Res. – volume: 790 start-page: 339 year: 2016 end-page: 367 article-title: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer publication-title: J. Fluid Mech. – volume: 218 start-page: 405 year: 1990 end-page: 438 article-title: Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers publication-title: J. Fluid Mech. – volume: 262 start-page: 75 year: 1994 ident: S0022112024000466_ref14 article-title: Active turbulence control for drag reduction in wall-bounded flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112094000431 – volume: 873 start-page: 89 year: 2019 ident: S0022112024000466_ref44 article-title: Coherent large-scale structures from the linearized Navier–Stokes equations publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.391 – volume: 2 start-page: 094604 year: 2017 ident: S0022112024000466_ref53 article-title: Correlation of pressure fluctuations in turbulent wall layers publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.094604 – volume: 918 start-page: A18 year: 2021 ident: S0022112024000466_ref26 article-title: Low- and mid-frequency wall-pressure sources in a turbulent boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.339 – ident: S0022112024000466_ref48 doi: 10.2514/6.2004-681 – volume: 1 start-page: 081501 year: 2016 ident: S0022112024000466_ref11 article-title: Reynolds number dependence of large-scale friction control in turbulent channel flow publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.1.081501 – volume: 43 start-page: 353 year: 2011 ident: S0022112024000466_ref63 article-title: High Reynolds number wall turbulence publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122109-160753 – volume: 750 start-page: 316 year: 2014 ident: S0022112024000466_ref9 article-title: Active control of a turbulent boundary layer based on local surface perturbation publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.261 – volume: 218 start-page: 405 year: 1990 ident: S0022112024000466_ref55 article-title: Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/S0022112090001057 – volume: 676 start-page: 41 year: 2011 ident: S0022112024000466_ref64 article-title: Spatial resolution correction for wall-bounded turbulence measurements publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.19 – volume: 141 start-page: 1257 year: 2017 ident: S0022112024000466_ref68 article-title: An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4976341 – volume: 771 start-page: 624 year: 2015 ident: S0022112024000466_ref51 article-title: Space–time pressure–velocity correlations in a turbulent boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.158 – volume: 735 start-page: 381 year: 2013 ident: S0022112024000466_ref25 article-title: Turbulent structure of high-amplitude pressure peaks within the turbulent boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.501 – volume: 190 start-page: 531 year: 1988 ident: S0022112024000466_ref3 article-title: Stochastic estimation of organized turbulent structure: homogeneous shear flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112088001442 – volume: 580 start-page: 381 year: 2007 ident: S0022112024000466_ref61 article-title: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime publication-title: J. Fluid Mech. doi: 10.1017/S0022112007005502 – volume: 287 start-page: 317 year: 1995 ident: S0022112024000466_ref30 article-title: Regeneration mechanisms of near-wall turbulence structures publication-title: J. Fluid Mech. doi: 10.1017/S0022112095000978 – ident: S0022112024000466_ref18 doi: 10.1103/PhysRevFluids.9.064602 – volume: 41 start-page: 763 year: 2006 ident: S0022112024000466_ref66 article-title: On spectral linear stochastic estimation publication-title: Exp. Fluids doi: 10.1007/s00348-006-0199-5 – volume: 67 start-page: 30 year: 2017 ident: S0022112024000466_ref1 article-title: Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures publication-title: Intl J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2017.05.003 – volume: 319 start-page: 199 year: 2009 ident: S0022112024000466_ref34 article-title: Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.06.002 – volume: 628 start-page: 311 year: 2009 ident: S0022112024000466_ref45 article-title: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/S0022112009006946 – volume: 57 start-page: 1533 year: 1975 ident: S0022112024000466_ref54 article-title: Resonant frequencies of cylindrical Helmholtz resonators publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.380596 – volume: 635 start-page: 103 year: 2009 ident: S0022112024000466_ref33 article-title: Hot-wire spatial resolution issues in wall-bounded turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112009007721 – volume: 8 start-page: 064612 year: 2023 ident: S0022112024000466_ref5 article-title: Towards real-time reconstruction of velocity fluctuations in turbulent channel flow publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.8.064612 – volume: 25 start-page: 1037 year: 1953 ident: S0022112024000466_ref35 article-title: On the theory and design of acoustic resonators publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1907235 – volume: 673 start-page: 255 year: 2011 ident: S0022112024000466_ref32 article-title: Three-dimensional conditional structure of a high Reynolds number turbulent boundary layer publication-title: J. Fluid Mech. doi: 10.1017/S0022112010006245 – volume: 888 start-page: A32 year: 2020 ident: S0022112024000466_ref43 article-title: An input–output based analysis of convective velocity in turbulent channels publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.48 – volume: 10 start-page: 1049 year: 1998 ident: S0022112024000466_ref60 article-title: A large-scale control strategy for drag reduction in turbulent boundary layers publication-title: Phys. Fluids doi: 10.1063/1.869789 – volume: 860 start-page: 886 year: 2019 ident: S0022112024000466_ref42 article-title: Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.903 – volume: 22 start-page: 2065 year: 1979 ident: S0022112024000466_ref2 article-title: Conditional eddies in isotropic turbulence publication-title: Phys. Fluids doi: 10.1063/1.862515 – volume: 3 start-page: 2410 year: 1991 ident: S0022112024000466_ref24 article-title: Spectral features of wall pressure fluctuations beneath turbulent boundary layers publication-title: Phys. Fluids A doi: 10.1063/1.858179 – volume: 369 start-page: 1443 year: 2011 ident: S0022112024000466_ref16 article-title: Turbulent boundary-layer control with plasma actuators publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2010.0362 – volume: 495 start-page: 209 year: 2003 ident: S0022112024000466_ref57 article-title: Active control of turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/S0022112003006177 – volume: 7 start-page: 13 year: 1975 ident: S0022112024000466_ref69 article-title: Pressure fluctuations beneath turbulent boundary layers publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.07.010175.000305 – volume: 36 start-page: 1157 year: 1998 ident: S0022112024000466_ref15 article-title: Turbulent boundary-layer control by means of spanwise-wall oscillation publication-title: AIAA J. doi: 10.2514/2.526 – volume: 41 start-page: 021404 year: 2009 ident: S0022112024000466_ref12 article-title: Criteria for assessing experiments in zero pressure gradient boundary layers publication-title: Fluid Dyn. Res. doi: 10.1088/0169-5983/41/2/021404 – volume: 134 start-page: 311 year: 1983 ident: S0022112024000466_ref59 article-title: On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112083003389 – volume: 17 start-page: 758 year: 2016 ident: S0022112024000466_ref21 article-title: Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at $Re_\tau = 1000$ publication-title: J. Turbul. doi: 10.1080/14685248.2016.1181266 – volume: 128 start-page: 283 year: 1983 ident: S0022112024000466_ref65 article-title: On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer publication-title: J. Fluid Mech. doi: 10.1017/S002211208300049X – volume: 25 start-page: 017101 year: 2013 ident: S0022112024000466_ref39 article-title: Multi-time delay, multi-point linear stochastic estimation of a cavity shear layer velocity from wall-pressure measurements publication-title: Phys. Fluids doi: 10.1063/1.4774337 – volume: 6 start-page: 014604 year: 2021 ident: S0022112024000466_ref17 article-title: Biphase as a diagnostic for scale interactions in wall-bounded turbulence publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.6.014604 – volume: 790 start-page: 339 year: 2016 ident: S0022112024000466_ref58 article-title: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.12 – volume: 640 start-page: 5 year: 2009 ident: S0022112024000466_ref20 article-title: Estimation of turbulent convection velocites and corrections to Taylor's approximation publication-title: J. Fluid Mech. doi: 10.1017/S0022112009991029 – volume: 823 start-page: R2 year: 2017 ident: S0022112024000466_ref6 article-title: Self-similarity of wall-attached turbulence in boundary layers publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.357 – volume: 13 start-page: 2611 year: 2001 ident: S0022112024000466_ref50 article-title: Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer publication-title: Phys. Fluids doi: 10.1063/1.1389284 – volume: 36 start-page: 1808 year: 1998 ident: S0022112024000466_ref27 article-title: Characterization of the pressure fluctuations under a fully developed turbulent boundary layer publication-title: AIAA J. doi: 10.2514/2.296 – volume: 28 start-page: 1074 year: 1971 ident: S0022112024000466_ref52 article-title: On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2 – volume: 611 start-page: 215 year: 2008 ident: S0022112024000466_ref36 article-title: Turbulent fluctuations above the buffer layer of wall-bounded flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112008002747 – volume: 170 start-page: 107504 year: 2020 ident: S0022112024000466_ref46 article-title: Aeroacoustic design and characterization of the 3D-printed, open-jet, anechoic wind tunnel of Delft University of Technology publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107504 – ident: S0022112024000466_ref23 doi: 10.1007/978-94-011-4601-2_33 – volume: 41 start-page: 969 year: 2003 ident: S0022112024000466_ref47 article-title: Estimation of the flowfield from surface pressure measurements in an open cavity publication-title: AIAA J. doi: 10.2514/2.2035 – volume: 1 start-page: 014401 year: 2016 ident: S0022112024000466_ref71 article-title: Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.1.014401 – volume: 22 start-page: 14 year: 1996 ident: S0022112024000466_ref49 article-title: Extraction of turbulent wall-pressure time-series using an optimal filtering scheme publication-title: Exp. Fluids doi: 10.1007/BF01893301 – volume: 852 start-page: 678 year: 2018 ident: S0022112024000466_ref70 article-title: Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.553 – volume: 890 start-page: R2 year: 2020 ident: S0022112024000466_ref22 article-title: Two-dimensional cross-spectrum of the streamwise velocity in turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.139 – volume: 928 start-page: A27 year: 2021 ident: S0022112024000466_ref28 article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.812 – volume: 882 start-page: A25 year: 2020 ident: S0022112024000466_ref7 article-title: Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.834 – volume: 916 start-page: A52 year: 2021 ident: S0022112024000466_ref13 article-title: Extension of QSQH theory of scale interaction in near-wall turbulence to all velocity components publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.180 – ident: S0022112024000466_ref4 – volume: 774 start-page: 395 year: 2015 ident: S0022112024000466_ref41 article-title: Direct numerical simulation of turbulent channel flow up to $Re_\tau = 5200$ publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.268 – volume: 30 start-page: 115101 year: 2018 ident: S0022112024000466_ref56 article-title: Turbulent boundary layer manipulation under a proportional-derivative closed-loop scheme publication-title: Phys. Fluids doi: 10.1063/1.5047537 – volume: 926 start-page: A31 year: 2021 ident: S0022112024000466_ref62 article-title: Reynolds stress scaling in the near-wall region of wall-bounded flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.736 – volume: 358 start-page: 245 year: 1998 ident: S0022112024000466_ref40 article-title: Suboptimal control of turbulent channel flow for drag reduction publication-title: J. Fluid Mech. doi: 10.1017/S002211209700815X – volume: 585 start-page: 1 year: 2007 ident: S0022112024000466_ref67 article-title: Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/S0022112007006076 – volume: 609 start-page: 195 year: 2008 ident: S0022112024000466_ref38 article-title: Statistical structure of the fluctuating wall pressure and its in-plane gradients at high Reynolds number publication-title: J. Fluid Mech. doi: 10.1017/S0022112008002541 – volume: 41 start-page: 231 year: 2009 ident: S0022112024000466_ref37 article-title: Microelectromechanical systems-based feedback control of turbulence for skin friction reduction publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165221 – volume: 26 start-page: 055112 year: 2014 ident: S0022112024000466_ref8 article-title: Proper orthogonal decomposition-based spectral higher-order stochastic estimation publication-title: Phys. Fluids doi: 10.1063/1.4879255 – volume: 15 start-page: L41 year: 2003 ident: S0022112024000466_ref19 article-title: Spectra of the very large anisotropic scales in turbulent channels publication-title: Phys. Fluids doi: 10.1063/1.1570830 – volume: 21 start-page: 105404 year: 2010 ident: S0022112024000466_ref31 article-title: Temperature corrections for constant temperature and constant current hot-wire anemometers publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/21/10/105404 – volume: 29 start-page: 020712 year: 2017 ident: S0022112024000466_ref10 article-title: Distance-from-the-wall scaling of turbulent motions in wall-bounded flows publication-title: Phys. Fluids doi: 10.1063/1.4974354 – volume: 1 start-page: 1054 year: 1989 ident: S0022112024000466_ref29 article-title: Stochastic estimation of coherent structures in turbulent boundary layers publication-title: Phys. Fluids A doi: 10.1063/1.857396 |
SSID | ssj0013097 |
Score | 2.4821196 |
Snippet | Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of... |
SourceID | osti proquest crossref cambridge |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Acoustic noise Channel flow Coherence Control systems Control systems design Controllers Correlation coefficient Correlation coefficients Direct numerical simulation Fluctuations Fluid flow Fourier transforms Friction JFM Papers Mechanics Physics Pressure Real time Reynolds number Robust control Scaling Sensors Spectral analysis Spectrum analysis State estimation Systems analysis Turbulence Turbulent flow Velocity Velocity coupling Wall pressure |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RS9xAEB7qiaAP2p4tPbWSB_FBiE2ym8vmSVpRRFCKKAg-hN3JLliO5GrukL71P_gP_SXOJHueUvEtkIENM7sz32xmvgHYyWVpkoQv3REFJSjGhUrQU6x1JkuBVltucD47H55cydPr9NpfuDW-rHLmE1tHXdbId-Tfk5ywfcrR5GD8J-SpUfx31Y_QWIBFcsGKkq_Fn0fnvy7m_xGiPJvxhROyiHyHHpNG_3bciJ7IffmKV-FVfOrVdM7-89Jt6Dn-CKseMwY_OiN_gg-26sOax4-BP51NH1ZekAv2Yakt7sRmHW4u7N-qHpVN2M3_CBoyDMkEtQvu9WgUtsWw0zv7-O-BS4iQkHmAPLbDF8oFt1UnaHgIE61JccpM23alz3B1fHR5eBL6oQohiqGYhFK4tDTaUt6lIiuGJhaxUUmZlUK5TBuHpowwkpgjEpSIUWuVW4WxwyhzSokv0Kvqyn6FQGBmOaGzlmIcRTltmM9PpYmKpFM2GsDus1oLfzSaoisrywrSf8H6L-RwAHsznRfoqcl5QsbobeGdZ-Fxx8jxttgmG68gIMFsuMhlQzgpklTFIpMD2JrZdP5l8y228f7rTVjmVdrO9ngLepO7qf1G2GRitv0GfALL6OVE priority: 102 providerName: ProQuest |
Title | Reynolds-number scaling of wall-pressure–velocity correlations in wall-bounded turbulence |
URI | https://www.cambridge.org/core/product/identifier/S0022112024000466/type/journal_article https://www.proquest.com/docview/2928756614 https://www.osti.gov/servlets/purl/2581374 |
Volume | 981 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB21iZDgwEegIrREPlQckEzs3bW9PhZoWj4aoUKlSBxW3vFaKoqcKk6EuPEf-If8EmbsTUpFD5zsw8hezdieN943bwAOc1VaIfinO6KkAsVWoZZ0FhdFpkqJrnDc4Hw2TU8v1PtZMtuB2aYXhmmVW42Ddie_nY921cmfji_LjkPjltzjK6h6ESzSxVVeOuaflmMfAuMdvwt9wgwxlWX9dx9mJ9PrHYYozzZK4nwV37vHctLfKm5RF-qVuqG4cCNz9Rb0Bv7z_W6T0uQh3PdoMjjqVvEIdlw9gAceWQb-vW0GcO8v2cEB3Glpn9g8hq_n7ke9mJdN2E0GCRoKGdkEiyr4XsznYUuTXS_d75-_mFyEhNkD5IEenkIXXNadoeXxTHRPymB23TYyPYGLyfGXN6ehH7cQokzlKlSySkpbOKrIdORkamMZWy3KrJS6ygpboS0jjBTmiAQyYiwKnTuNcYVRVmkt96BXL2r3FAKJmeNSzznKfpT_CstKfzoROlKVdtEQXmzdanzEGtMRzjJD_jfsf6PSIbzc-NygFy3n2Rnz240Pt8ZXnVbH7Wb7HDxDEIN1cpEJRbgyItGxzNQQDjYxvV6ZyKmwTBjKPPvfle_DXT5ru9_jA-itlmv3nPDLyo5gV09ORtA_env28TMdXx9PP52P_AP6B4HX9TU |
linkProvider | Cambridge University Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VRYhy4GcBsbRADoUDUiCxnY1zQAgBy5b-HFArVeLgxhNbKlolpdlV1RvvwHvwUDwJM_npUlFx6y1SRnE0HvubsWe-AdjIVGGF4EN3REkBivWhlvQU53mqCokud1zgvLM7nu6rzwfJwQr86mthOK2y3xObjbqokM_IX4uMfPuE0eTt8feQu0bx7WrfQqM1iy13dkohW_1m8wPN73MhJh_33k_DrqtAiHIs56GSPils7ijw0JGTYxvL2GpRpIXUPs2tR1tEGCnMEAlLY8xznTmNscco9VpL-u41uK6kzHhF6cmn5a1FlKU9Ozn5MVFXD8gU1d88l70L9UpdYHG4gIaDilb1P5jQAN3kLtzuPNTgXWtS92DFlUO403mrQbcX1EO49ReV4RBuNKmkWN-Hr1_cWVnNijpsu40ENZkByQSVD07z2SxsUm8XJ-73j5-csIQUBwTITUK6tLzgqGwFLbd8ojEJFe2iKY56APtXouyHMCir0j2CQGLqOHx0jhCVMDW3zB6oE6Ej5bWLRvDiXK2mW4i1aZPYUkP6N6x_o8YjeNnr3GBHhM79OGaXC2-cCx-3_B-Xi63x5BlyW5h7FzlJCedGJDqWqRrBej-nyz9bGvTj_79-BjenezvbZntzd2sNVnnEpqY-XofB_GThnpBXNLdPG1MM4PCqbf8PcVYibw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reynolds-number+scaling+of+wall-pressure%E2%80%93velocity+correlations+in+wall-bounded+turbulence&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Baars%2C+Woutijn+J.&rft.au=Dacome%2C+Giulio&rft.au=Lee%2C+Myoungkyu&rft.date=2024-02-21&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=981&rft_id=info:doi/10.1017%2Fjfm.2024.46&rft.externalDocID=10_1017_jfm_2024_46 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |