Reynolds-number scaling of wall-pressure–velocity correlations in wall-bounded turbulence

Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 981
Main Authors Baars, Woutijn J., Dacome, Giulio, Lee, Myoungkyu
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 21.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$. Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$, the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$, and $p_w$ and $v$, respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers.
AbstractList Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range$Re_\tau \approx 550\unicode{x2013}5200$. Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of$\lambda _x/y \approx 14$(and$\lambda _x/y \approx 8$for the wall-normal velocity). When extending the analysis to both homogeneous directions in$x$and$y$, the peak coherence is centred at$\lambda _x/\lambda _z \approx 2$and$\lambda _x/\lambda _z \approx 1$for$p_w$and$u$, and$p_w$and$v$, respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of$Re_\tau \approx 2$k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of$\approx$0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers.
Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$. Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$, the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$, and $p_w$ and $v$, respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers.
Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$ . Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$ , the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$ , and $p_w$ and $v$ , respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$ k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$ 0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers.
ArticleNumber A15
Author Baars, Woutijn J.
Lee, Myoungkyu
Dacome, Giulio
Author_xml – sequence: 1
  givenname: Woutijn J.
  orcidid: 0000-0003-1526-3084
  surname: Baars
  fullname: Baars, Woutijn J.
  email: w.j.baars@tudelft.nl
  organization: 1Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands
– sequence: 2
  givenname: Giulio
  orcidid: 0009-0000-3088-2495
  surname: Dacome
  fullname: Dacome, Giulio
  organization: 1Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands
– sequence: 3
  givenname: Myoungkyu
  orcidid: 0000-0002-5647-6265
  surname: Lee
  fullname: Lee, Myoungkyu
  email: w.j.baars@tudelft.nl
  organization: 2Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
BackLink https://www.osti.gov/servlets/purl/2581374$$D View this record in Osti.gov
BookMark eNp10M9qGzEQBnBRXKjt9NQXWJJjWFf_vKs9lpA0AUOhpKcehDQ7ctfIkiPtJvjWd-gb5kmyjgOFkJzm8pvhm29GJiEGJOQLowtGWf1147YLTrlcyOoDmTJZNWVdyeWETCnlvGSM009klvOGUiZoU0_J75-4D9G3uQzD1mIqMhjfhXURXfFgvC93CXMeEj7-_XePPkLX7wuIKaE3fRdDLrpwhDYOocW26IdkB48B8IR8dMZn_Pwy5-TX1eXtxXW5-vH95uLbqgRRib6Uwi1ba7DhUlEUlWWCWcXbuhXK1cY6sC0FKqEBaMY3wRjVoALmgNZOKTEnp8e7MfedzmNEhD8QQ0DoNV8qJmo5orMj2qV4N2Du9SYOKYy5NG-4qpdVxQ6KHRWkmHNCp8drz4_2yXReM6oPReuxaH0oWstq3Dl_tbNL3dak_Tu6fNFma1PXrvF_kLf8E99bkwQ
CitedBy_id crossref_primary_10_1103_PhysRevFluids_9_104607
crossref_primary_10_1080_14685248_2024_2412586
crossref_primary_10_1063_5_0216465
crossref_primary_10_1103_PhysRevFluids_9_114610
crossref_primary_10_1017_jfm_2024_1218
Cites_doi 10.1017/S0022112094000431
10.1017/jfm.2019.391
10.1103/PhysRevFluids.2.094604
10.1017/jfm.2021.339
10.2514/6.2004-681
10.1103/PhysRevFluids.1.081501
10.1146/annurev-fluid-122109-160753
10.1017/jfm.2014.261
10.1017/S0022112090001057
10.1017/jfm.2011.19
10.1121/1.4976341
10.1017/jfm.2015.158
10.1017/jfm.2013.501
10.1017/S0022112088001442
10.1017/S0022112007005502
10.1017/S0022112095000978
10.1103/PhysRevFluids.9.064602
10.1007/s00348-006-0199-5
10.1016/j.ijheatfluidflow.2017.05.003
10.1016/j.jsv.2008.06.002
10.1017/S0022112009006946
10.1121/1.380596
10.1017/S0022112009007721
10.1103/PhysRevFluids.8.064612
10.1121/1.1907235
10.1017/S0022112010006245
10.1017/jfm.2020.48
10.1063/1.869789
10.1017/jfm.2018.903
10.1063/1.862515
10.1063/1.858179
10.1098/rsta.2010.0362
10.1017/S0022112003006177
10.1146/annurev.fl.07.010175.000305
10.2514/2.526
10.1088/0169-5983/41/2/021404
10.1017/S0022112083003389
10.1080/14685248.2016.1181266
10.1017/S002211208300049X
10.1063/1.4774337
10.1103/PhysRevFluids.6.014604
10.1017/jfm.2016.12
10.1017/S0022112009991029
10.1017/jfm.2017.357
10.1063/1.1389284
10.2514/2.296
10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2
10.1017/S0022112008002747
10.1016/j.apacoust.2020.107504
10.1007/978-94-011-4601-2_33
10.2514/2.2035
10.1103/PhysRevFluids.1.014401
10.1007/BF01893301
10.1017/jfm.2018.553
10.1017/jfm.2020.139
10.1017/jfm.2021.812
10.1017/jfm.2019.834
10.1017/jfm.2021.180
10.1017/jfm.2015.268
10.1063/1.5047537
10.1017/jfm.2021.736
10.1017/S002211209700815X
10.1017/S0022112007006076
10.1017/S0022112008002541
10.1146/annurev.fluid.010908.165221
10.1063/1.4879255
10.1063/1.1570830
10.1088/0957-0233/21/10/105404
10.1063/1.4974354
10.1063/1.857396
ContentType Journal Article
Copyright The Author(s), 2024. Published by Cambridge University Press.
The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2024. Published by Cambridge University Press.
– notice: The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF)
DBID IKXGN
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
OIOZB
OTOTI
DOI 10.1017/jfm.2024.46
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep

CrossRef
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 2581374
10_1017_jfm_2024_46
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
4.4
5GY
5VS
74X
74Y
7~V
8G5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
BBLKV
BENPR
BGHMG
BHPHI
BLZWO
BMAJL
C0O
CBIIA
CCQAD
CFAFE
CHEAL
CJCSC
CS3
DOHLZ
DU5
E.L
EBS
F5P
HCIFZ
HG-
HST
HZ~
I.6
IH6
IKXGN
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L98
LW7
M-V
M2O
NIKVX
O9-
OYBOY
P2P
PYCCK
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
29K
88I
8FE
8FG
8FH
8R4
8R5
AAYXX
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFKRA
AFZFC
AKMAY
AZQEC
BGLVJ
BKSAR
BPHCQ
CCPQU
CITATION
D-I
DWQXO
GNUQQ
GUQSH
L6V
LK5
M2P
M7R
M7S
P62
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
Q2X
S0W
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
OIOZB
OTOTI
PUEGO
ID FETCH-LOGICAL-c363t-43f5dbae92480e36b131b82d7d38f7abfcbd0c04c9cc9101caa89e8c1fc07f883
IEDL.DBID IKXGN
ISSN 0022-1120
IngestDate Mon Sep 01 02:23:05 EDT 2025
Sat Aug 16 19:41:29 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Jul 01 03:01:43 EDT 2025
Wed Mar 13 05:48:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords turbulent boundary layers
boundary layer structure
turbulence control
Language English
License http://creativecommons.org/licenses/by/4.0This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c363t-43f5dbae92480e36b131b82d7d38f7abfcbd0c04c9cc9101caa89e8c1fc07f883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-06CH11357
USDOE
None
ORCID 0000-0003-1526-3084
0009-0000-3088-2495
0000-0002-5647-6265
0000000256476265
0009000030882495
0000000315263084
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0022112024000466/type/journal_article
PQID 2928756614
PQPubID 34769
PageCount 36
ParticipantIDs osti_scitechconnect_2581374
proquest_journals_2928756614
crossref_citationtrail_10_1017_jfm_2024_46
crossref_primary_10_1017_jfm_2024_46
cambridge_journals_10_1017_jfm_2024_46
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-21
PublicationDateYYYYMMDD 2024-02-21
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
– name: United States
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2011; 676
2021; 926
2007; 585
2009; 41
2021; 928
2013; 25
2017; 2
2007; 580
1988; 190
2023; 8
1975; 57
2014; 26
2003; 15
2020; 888
2020; 882
1998; 358
2009; 635
2009; 319
2011; 673
2011; 369
2010; 21
1990; 218
2021; 916
2021; 918
2015; 774
2020; 890
1994; 262
2020; 170
2015; 771
2018; 852
2009; 640
2019; 873
2018; 30
1995; 287
1953; 25
1975; 7
1979; 22
2001; 13
1998; 10
2003; 41
2016; 790
1996; 22
1991; 3
2021; 6
1983; 134
1989; 1
1971; 28
2008; 609
2017; 67
2017; 29
2016; 17
2019; 860
2003; 495
2014; 750
2017; 823
1983; 128
2009; 628
2006; 41
2016; 1
2013; 735
2011; 43
2008; 611
2017; 141
1998; 36
Panton (S0022112024000466_ref53) 2017; 2
Thomas (S0022112024000466_ref65) 1983; 128
Farabee (S0022112024000466_ref24) 1991; 3
S0022112024000466_ref18
Lee (S0022112024000466_ref40) 1998; 358
Renard (S0022112024000466_ref58) 2016; 790
Hutchins (S0022112024000466_ref33) 2009; 635
del Álamo (S0022112024000466_ref20) 2009; 640
Perry (S0022112024000466_ref55) 1990; 218
Schoppa (S0022112024000466_ref60) 1998; 10
Qiao (S0022112024000466_ref56) 2018; 30
Tsuji (S0022112024000466_ref67) 2007; 585
Naka (S0022112024000466_ref51) 2015; 771
Orszag (S0022112024000466_ref52) 1971; 28
Smits (S0022112024000466_ref64) 2011; 676
Mathis (S0022112024000466_ref45) 2009; 628
Lee (S0022112024000466_ref42) 2019; 860
Baidya (S0022112024000466_ref10) 2017; 29
Hultmark (S0022112024000466_ref31) 2010; 21
Cui (S0022112024000466_ref17) 2021; 6
Baars (S0022112024000466_ref8) 2014; 26
Naguib (S0022112024000466_ref49) 1996; 22
Baars (S0022112024000466_ref6) 2017; 823
Smits (S0022112024000466_ref63) 2011; 43
Schewe (S0022112024000466_ref59) 1983; 134
Hamilton (S0022112024000466_ref30) 1995; 287
Panton (S0022112024000466_ref54) 1975; 57
Madhusudanan (S0022112024000466_ref44) 2019; 873
Chauhan (S0022112024000466_ref12) 2009; 41
Choi (S0022112024000466_ref16) 2011; 369
S0022112024000466_ref48
Guezennec (S0022112024000466_ref29) 1989; 1
Klewicki (S0022112024000466_ref38) 2008; 609
Schultz (S0022112024000466_ref61) 2007; 580
Liu (S0022112024000466_ref43) 2020; 888
Gravante (S0022112024000466_ref27) 1998; 36
del Álamo (S0022112024000466_ref19) 2003; 15
Kasagi (S0022112024000466_ref37) 2009; 41
Lasagna (S0022112024000466_ref39) 2013; 25
Rathnasingham (S0022112024000466_ref57) 2003; 495
Jiménez (S0022112024000466_ref36) 2008; 611
Van Blitterswyk (S0022112024000466_ref68) 2017; 141
Merino-Martínez (S0022112024000466_ref46) 2020; 170
Zhang (S0022112024000466_ref71) 2016; 1
Canton (S0022112024000466_ref11) 2016; 1
Baars (S0022112024000466_ref7) 2020; 882
Chernyshenko (S0022112024000466_ref13) 2021; 916
Adrian (S0022112024000466_ref3) 1988; 190
Hutchins (S0022112024000466_ref32) 2011; 673
Gibeau (S0022112024000466_ref26) 2021; 918
Guastoni (S0022112024000466_ref28) 2021; 928
Abbassi (S0022112024000466_ref1) 2017; 67
S0022112024000466_ref4
Deng (S0022112024000466_ref21) 2016; 17
Hwang (S0022112024000466_ref34) 2009; 319
Bai (S0022112024000466_ref9) 2014; 750
Ingard (S0022112024000466_ref35) 1953; 25
Deshpande (S0022112024000466_ref22) 2020; 890
Lee (S0022112024000466_ref41) 2015; 774
Ghaemi (S0022112024000466_ref25) 2013; 735
Choi (S0022112024000466_ref15) 1998; 36
Adrian (S0022112024000466_ref2) 1979; 22
Smits (S0022112024000466_ref62) 2021; 926
Choi (S0022112024000466_ref14) 1994; 262
Naguib (S0022112024000466_ref50) 2001; 13
Arun (S0022112024000466_ref5) 2023; 8
Willmarth (S0022112024000466_ref69) 1975; 7
Murray (S0022112024000466_ref47) 2003; 41
Yao (S0022112024000466_ref70) 2018; 852
S0022112024000466_ref23
Tinney (S0022112024000466_ref66) 2006; 41
References_xml – volume: 882
  start-page: A25
  year: 2020
  article-title: Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra
  publication-title: J. Fluid Mech.
– volume: 676
  start-page: 41
  year: 2011
  end-page: 53
  article-title: Spatial resolution correction for wall-bounded turbulence measurements
  publication-title: J. Fluid Mech.
– volume: 928
  start-page: A27
  year: 2021
  article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities
  publication-title: J. Fluid Mech.
– volume: 21
  start-page: 105404
  year: 2010
  article-title: Temperature corrections for constant temperature and constant current hot-wire anemometers
  publication-title: Meas. Sci. Technol.
– volume: 585
  start-page: 1
  year: 2007
  end-page: 40
  article-title: Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 141
  start-page: 1257
  issue: 2
  year: 2017
  end-page: 1268
  article-title: An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers
  publication-title: J. Acoust. Soc. Am.
– volume: 609
  start-page: 195
  year: 2008
  end-page: 220
  article-title: Statistical structure of the fluctuating wall pressure and its in-plane gradients at high Reynolds number
  publication-title: J. Fluid Mech.
– volume: 43
  start-page: 353
  year: 2011
  end-page: 375
  article-title: High Reynolds number wall turbulence
  publication-title: Annu. Rev. Fluid Mech.
– volume: 8
  start-page: 064612
  year: 2023
  article-title: Towards real-time reconstruction of velocity fluctuations in turbulent channel flow
  publication-title: Phys. Rev. Fluids
– volume: 7
  start-page: 13
  year: 1975
  end-page: 36
  article-title: Pressure fluctuations beneath turbulent boundary layers
  publication-title: Annu. Rev. Fluid Mech.
– volume: 6
  start-page: 014604
  year: 2021
  article-title: Biphase as a diagnostic for scale interactions in wall-bounded turbulence
  publication-title: Phys. Rev. Fluids
– volume: 873
  start-page: 89
  year: 2019
  end-page: 109
  article-title: Coherent large-scale structures from the linearized Navier–Stokes equations
  publication-title: J. Fluid Mech.
– volume: 860
  start-page: 886
  year: 2019
  end-page: 938
  article-title: Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number
  publication-title: J. Fluid Mech.
– volume: 41
  start-page: 763
  issue: 5
  year: 2006
  end-page: 775
  article-title: On spectral linear stochastic estimation
  publication-title: Exp. Fluids
– volume: 190
  start-page: 531
  year: 1988
  end-page: 559
  article-title: Stochastic estimation of organized turbulent structure: homogeneous shear flow
  publication-title: J. Fluid Mech.
– volume: 918
  start-page: A18
  year: 2021
  article-title: Low- and mid-frequency wall-pressure sources in a turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 673
  start-page: 255
  year: 2011
  end-page: 285
  article-title: Three-dimensional conditional structure of a high Reynolds number turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 017101
  year: 2013
  article-title: Multi-time delay, multi-point linear stochastic estimation of a cavity shear layer velocity from wall-pressure measurements
  publication-title: Phys. Fluids
– volume: 495
  start-page: 209
  year: 2003
  end-page: 233
  article-title: Active control of turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 67
  start-page: 30
  year: 2017
  end-page: 41
  article-title: Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures
  publication-title: Intl J. Heat Fluid Flow
– volume: 890
  start-page: R2
  year: 2020
  article-title: Two-dimensional cross-spectrum of the streamwise velocity in turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 926
  start-page: A31
  year: 2021
  article-title: Reynolds stress scaling in the near-wall region of wall-bounded flows
  publication-title: J. Fluid Mech.
– volume: 852
  start-page: 678
  year: 2018
  end-page: 709
  article-title: Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing
  publication-title: J. Fluid Mech.
– volume: 774
  start-page: 395
  year: 2015
  end-page: 415
  article-title: Direct numerical simulation of turbulent channel flow up to $Re_\tau = 5200$
  publication-title: J. Fluid Mech.
– volume: 10
  start-page: 1049
  issue: 5
  year: 1998
  end-page: 1051
  article-title: A large-scale control strategy for drag reduction in turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 3
  start-page: 2410
  issue: 10
  year: 1991
  end-page: 2420
  article-title: Spectral features of wall pressure fluctuations beneath turbulent boundary layers
  publication-title: Phys. Fluids A
– volume: 128
  start-page: 283
  year: 1983
  end-page: 322
  article-title: On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 640
  start-page: 5
  year: 2009
  end-page: 26
  article-title: Estimation of turbulent convection velocites and corrections to Taylor's approximation
  publication-title: J. Fluid Mech.
– volume: 611
  start-page: 215
  year: 2008
  end-page: 236
  article-title: Turbulent fluctuations above the buffer layer of wall-bounded flows
  publication-title: J. Fluid Mech.
– volume: 580
  start-page: 381
  year: 2007
  end-page: 405
  article-title: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime
  publication-title: J. Fluid Mech.
– volume: 888
  start-page: A32
  year: 2020
  article-title: An input–output based analysis of convective velocity in turbulent channels
  publication-title: J. Fluid Mech.
– volume: 26
  start-page: 055112
  year: 2014
  article-title: Proper orthogonal decomposition-based spectral higher-order stochastic estimation
  publication-title: Phys. Fluids
– volume: 369
  start-page: 1443
  year: 2011
  end-page: 1458
  article-title: Turbulent boundary-layer control with plasma actuators
  publication-title: Phil. Trans. R. Soc. A
– volume: 36
  start-page: 1808
  issue: 10
  year: 1998
  end-page: 1816
  article-title: Characterization of the pressure fluctuations under a fully developed turbulent boundary layer
  publication-title: AIAA J.
– volume: 36
  start-page: 1157
  issue: 7
  year: 1998
  end-page: 1163
  article-title: Turbulent boundary-layer control by means of spanwise-wall oscillation
  publication-title: AIAA J.
– volume: 15
  start-page: L41
  issue: 6
  year: 2003
  end-page: L44
  article-title: Spectra of the very large anisotropic scales in turbulent channels
  publication-title: Phys. Fluids
– volume: 916
  start-page: A52
  year: 2021
  article-title: Extension of QSQH theory of scale interaction in near-wall turbulence to all velocity components
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 1074
  issue: 6
  year: 1971
  end-page: 1074
  article-title: On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components
  publication-title: J. Atmos. Sci.
– volume: 628
  start-page: 311
  year: 2009
  end-page: 337
  article-title: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 41
  start-page: 231
  year: 2009
  end-page: 251
  article-title: Microelectromechanical systems-based feedback control of turbulence for skin friction reduction
  publication-title: Annu. Rev. Fluid Mech.
– volume: 2
  start-page: 094604
  year: 2017
  article-title: Correlation of pressure fluctuations in turbulent wall layers
  publication-title: Phys. Rev. Fluids
– volume: 1
  start-page: 014401
  year: 2016
  article-title: Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence
  publication-title: Phys. Rev. Fluids
– volume: 358
  start-page: 245
  year: 1998
  end-page: 258
  article-title: Suboptimal control of turbulent channel flow for drag reduction
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 2611
  issue: 9
  year: 2001
  end-page: 2626
  article-title: Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer
  publication-title: Phys. Fluids
– volume: 30
  start-page: 115101
  year: 2018
  article-title: Turbulent boundary layer manipulation under a proportional-derivative closed-loop scheme
  publication-title: Phys. Fluids
– volume: 750
  start-page: 316
  year: 2014
  end-page: 354
  article-title: Active control of a turbulent boundary layer based on local surface perturbation
  publication-title: J. Fluid Mech.
– volume: 635
  start-page: 103
  year: 2009
  end-page: 136
  article-title: Hot-wire spatial resolution issues in wall-bounded turbulence
  publication-title: J. Fluid Mech.
– volume: 771
  start-page: 624
  year: 2015
  end-page: 675
  article-title: Space–time pressure–velocity correlations in a turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 319
  start-page: 199
  year: 2009
  end-page: 217
  article-title: Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra
  publication-title: J. Sound Vib.
– volume: 22
  start-page: 2065
  issue: 11
  year: 1979
  end-page: 2070
  article-title: Conditional eddies in isotropic turbulence
  publication-title: Phys. Fluids
– volume: 823
  start-page: R2
  year: 2017
  article-title: Self-similarity of wall-attached turbulence in boundary layers
  publication-title: J. Fluid Mech.
– volume: 1
  start-page: 081501
  year: 2016
  article-title: Reynolds number dependence of large-scale friction control in turbulent channel flow
  publication-title: Phys. Rev. Fluids
– volume: 287
  start-page: 317
  year: 1995
  end-page: 348
  article-title: Regeneration mechanisms of near-wall turbulence structures
  publication-title: J. Fluid Mech.
– volume: 735
  start-page: 381
  year: 2013
  end-page: 426
  article-title: Turbulent structure of high-amplitude pressure peaks within the turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 170
  start-page: 107504
  year: 2020
  article-title: Aeroacoustic design and characterization of the 3D-printed, open-jet, anechoic wind tunnel of Delft University of Technology
  publication-title: Appl. Acoust.
– volume: 134
  start-page: 311
  year: 1983
  end-page: 328
  article-title: On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow
  publication-title: J. Fluid Mech.
– volume: 17
  start-page: 758
  issue: 8
  year: 2016
  end-page: 786
  article-title: Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at $Re_\tau = 1000$
  publication-title: J. Turbul.
– volume: 41
  start-page: 969
  issue: 5
  year: 2003
  end-page: 972
  article-title: Estimation of the flowfield from surface pressure measurements in an open cavity
  publication-title: AIAA J.
– volume: 22
  start-page: 14
  year: 1996
  end-page: 22
  article-title: Extraction of turbulent wall-pressure time-series using an optimal filtering scheme
  publication-title: Exp. Fluids
– volume: 29
  start-page: 020712
  year: 2017
  article-title: Distance-from-the-wall scaling of turbulent motions in wall-bounded flows
  publication-title: Phys. Fluids
– volume: 57
  start-page: 1533
  issue: 6
  year: 1975
  end-page: 1535
  article-title: Resonant frequencies of cylindrical Helmholtz resonators
  publication-title: J. Acoust. Soc. Am.
– volume: 262
  start-page: 75
  year: 1994
  end-page: 110
  article-title: Active turbulence control for drag reduction in wall-bounded flows
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 1037
  issue: 6
  year: 1953
  end-page: 1061
  article-title: On the theory and design of acoustic resonators
  publication-title: J. Acoust. Soc. Am.
– volume: 1
  start-page: 1054
  issue: 6
  year: 1989
  end-page: 1060
  article-title: Stochastic estimation of coherent structures in turbulent boundary layers
  publication-title: Phys. Fluids A
– volume: 41
  start-page: 021404
  year: 2009
  article-title: Criteria for assessing experiments in zero pressure gradient boundary layers
  publication-title: Fluid Dyn. Res.
– volume: 790
  start-page: 339
  year: 2016
  end-page: 367
  article-title: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer
  publication-title: J. Fluid Mech.
– volume: 218
  start-page: 405
  year: 1990
  end-page: 438
  article-title: Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 262
  start-page: 75
  year: 1994
  ident: S0022112024000466_ref14
  article-title: Active turbulence control for drag reduction in wall-bounded flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094000431
– volume: 873
  start-page: 89
  year: 2019
  ident: S0022112024000466_ref44
  article-title: Coherent large-scale structures from the linearized Navier–Stokes equations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.391
– volume: 2
  start-page: 094604
  year: 2017
  ident: S0022112024000466_ref53
  article-title: Correlation of pressure fluctuations in turbulent wall layers
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.2.094604
– volume: 918
  start-page: A18
  year: 2021
  ident: S0022112024000466_ref26
  article-title: Low- and mid-frequency wall-pressure sources in a turbulent boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.339
– ident: S0022112024000466_ref48
  doi: 10.2514/6.2004-681
– volume: 1
  start-page: 081501
  year: 2016
  ident: S0022112024000466_ref11
  article-title: Reynolds number dependence of large-scale friction control in turbulent channel flow
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.1.081501
– volume: 43
  start-page: 353
  year: 2011
  ident: S0022112024000466_ref63
  article-title: High Reynolds number wall turbulence
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122109-160753
– volume: 750
  start-page: 316
  year: 2014
  ident: S0022112024000466_ref9
  article-title: Active control of a turbulent boundary layer based on local surface perturbation
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.261
– volume: 218
  start-page: 405
  year: 1990
  ident: S0022112024000466_ref55
  article-title: Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112090001057
– volume: 676
  start-page: 41
  year: 2011
  ident: S0022112024000466_ref64
  article-title: Spatial resolution correction for wall-bounded turbulence measurements
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.19
– volume: 141
  start-page: 1257
  year: 2017
  ident: S0022112024000466_ref68
  article-title: An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4976341
– volume: 771
  start-page: 624
  year: 2015
  ident: S0022112024000466_ref51
  article-title: Space–time pressure–velocity correlations in a turbulent boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.158
– volume: 735
  start-page: 381
  year: 2013
  ident: S0022112024000466_ref25
  article-title: Turbulent structure of high-amplitude pressure peaks within the turbulent boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.501
– volume: 190
  start-page: 531
  year: 1988
  ident: S0022112024000466_ref3
  article-title: Stochastic estimation of organized turbulent structure: homogeneous shear flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088001442
– volume: 580
  start-page: 381
  year: 2007
  ident: S0022112024000466_ref61
  article-title: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007005502
– volume: 287
  start-page: 317
  year: 1995
  ident: S0022112024000466_ref30
  article-title: Regeneration mechanisms of near-wall turbulence structures
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095000978
– ident: S0022112024000466_ref18
  doi: 10.1103/PhysRevFluids.9.064602
– volume: 41
  start-page: 763
  year: 2006
  ident: S0022112024000466_ref66
  article-title: On spectral linear stochastic estimation
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-006-0199-5
– volume: 67
  start-page: 30
  year: 2017
  ident: S0022112024000466_ref1
  article-title: Skin-friction drag reduction in a high-Reynolds-number turbulent boundary layer via real-time control of large-scale structures
  publication-title: Intl J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2017.05.003
– volume: 319
  start-page: 199
  year: 2009
  ident: S0022112024000466_ref34
  article-title: Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.06.002
– volume: 628
  start-page: 311
  year: 2009
  ident: S0022112024000466_ref45
  article-title: Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009006946
– volume: 57
  start-page: 1533
  year: 1975
  ident: S0022112024000466_ref54
  article-title: Resonant frequencies of cylindrical Helmholtz resonators
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.380596
– volume: 635
  start-page: 103
  year: 2009
  ident: S0022112024000466_ref33
  article-title: Hot-wire spatial resolution issues in wall-bounded turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009007721
– volume: 8
  start-page: 064612
  year: 2023
  ident: S0022112024000466_ref5
  article-title: Towards real-time reconstruction of velocity fluctuations in turbulent channel flow
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.8.064612
– volume: 25
  start-page: 1037
  year: 1953
  ident: S0022112024000466_ref35
  article-title: On the theory and design of acoustic resonators
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1907235
– volume: 673
  start-page: 255
  year: 2011
  ident: S0022112024000466_ref32
  article-title: Three-dimensional conditional structure of a high Reynolds number turbulent boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010006245
– volume: 888
  start-page: A32
  year: 2020
  ident: S0022112024000466_ref43
  article-title: An input–output based analysis of convective velocity in turbulent channels
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.48
– volume: 10
  start-page: 1049
  year: 1998
  ident: S0022112024000466_ref60
  article-title: A large-scale control strategy for drag reduction in turbulent boundary layers
  publication-title: Phys. Fluids
  doi: 10.1063/1.869789
– volume: 860
  start-page: 886
  year: 2019
  ident: S0022112024000466_ref42
  article-title: Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.903
– volume: 22
  start-page: 2065
  year: 1979
  ident: S0022112024000466_ref2
  article-title: Conditional eddies in isotropic turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.862515
– volume: 3
  start-page: 2410
  year: 1991
  ident: S0022112024000466_ref24
  article-title: Spectral features of wall pressure fluctuations beneath turbulent boundary layers
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858179
– volume: 369
  start-page: 1443
  year: 2011
  ident: S0022112024000466_ref16
  article-title: Turbulent boundary-layer control with plasma actuators
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2010.0362
– volume: 495
  start-page: 209
  year: 2003
  ident: S0022112024000466_ref57
  article-title: Active control of turbulent boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003006177
– volume: 7
  start-page: 13
  year: 1975
  ident: S0022112024000466_ref69
  article-title: Pressure fluctuations beneath turbulent boundary layers
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.07.010175.000305
– volume: 36
  start-page: 1157
  year: 1998
  ident: S0022112024000466_ref15
  article-title: Turbulent boundary-layer control by means of spanwise-wall oscillation
  publication-title: AIAA J.
  doi: 10.2514/2.526
– volume: 41
  start-page: 021404
  year: 2009
  ident: S0022112024000466_ref12
  article-title: Criteria for assessing experiments in zero pressure gradient boundary layers
  publication-title: Fluid Dyn. Res.
  doi: 10.1088/0169-5983/41/2/021404
– volume: 134
  start-page: 311
  year: 1983
  ident: S0022112024000466_ref59
  article-title: On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112083003389
– volume: 17
  start-page: 758
  year: 2016
  ident: S0022112024000466_ref21
  article-title: Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at $Re_\tau = 1000$
  publication-title: J. Turbul.
  doi: 10.1080/14685248.2016.1181266
– volume: 128
  start-page: 283
  year: 1983
  ident: S0022112024000466_ref65
  article-title: On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211208300049X
– volume: 25
  start-page: 017101
  year: 2013
  ident: S0022112024000466_ref39
  article-title: Multi-time delay, multi-point linear stochastic estimation of a cavity shear layer velocity from wall-pressure measurements
  publication-title: Phys. Fluids
  doi: 10.1063/1.4774337
– volume: 6
  start-page: 014604
  year: 2021
  ident: S0022112024000466_ref17
  article-title: Biphase as a diagnostic for scale interactions in wall-bounded turbulence
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.6.014604
– volume: 790
  start-page: 339
  year: 2016
  ident: S0022112024000466_ref58
  article-title: A theoretical decomposition of mean skin friction generation into physical phenomena across the boundary layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.12
– volume: 640
  start-page: 5
  year: 2009
  ident: S0022112024000466_ref20
  article-title: Estimation of turbulent convection velocites and corrections to Taylor's approximation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009991029
– volume: 823
  start-page: R2
  year: 2017
  ident: S0022112024000466_ref6
  article-title: Self-similarity of wall-attached turbulence in boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.357
– volume: 13
  start-page: 2611
  year: 2001
  ident: S0022112024000466_ref50
  article-title: Stochastic estimation and flow sources associated with surface pressure events in a turbulent boundary layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.1389284
– volume: 36
  start-page: 1808
  year: 1998
  ident: S0022112024000466_ref27
  article-title: Characterization of the pressure fluctuations under a fully developed turbulent boundary layer
  publication-title: AIAA J.
  doi: 10.2514/2.296
– volume: 28
  start-page: 1074
  year: 1971
  ident: S0022112024000466_ref52
  article-title: On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2
– volume: 611
  start-page: 215
  year: 2008
  ident: S0022112024000466_ref36
  article-title: Turbulent fluctuations above the buffer layer of wall-bounded flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008002747
– volume: 170
  start-page: 107504
  year: 2020
  ident: S0022112024000466_ref46
  article-title: Aeroacoustic design and characterization of the 3D-printed, open-jet, anechoic wind tunnel of Delft University of Technology
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107504
– ident: S0022112024000466_ref23
  doi: 10.1007/978-94-011-4601-2_33
– volume: 41
  start-page: 969
  year: 2003
  ident: S0022112024000466_ref47
  article-title: Estimation of the flowfield from surface pressure measurements in an open cavity
  publication-title: AIAA J.
  doi: 10.2514/2.2035
– volume: 1
  start-page: 014401
  year: 2016
  ident: S0022112024000466_ref71
  article-title: Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.1.014401
– volume: 22
  start-page: 14
  year: 1996
  ident: S0022112024000466_ref49
  article-title: Extraction of turbulent wall-pressure time-series using an optimal filtering scheme
  publication-title: Exp. Fluids
  doi: 10.1007/BF01893301
– volume: 852
  start-page: 678
  year: 2018
  ident: S0022112024000466_ref70
  article-title: Drag control in wall-bounded turbulent flows via spanwise opposed wall-jet forcing
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.553
– volume: 890
  start-page: R2
  year: 2020
  ident: S0022112024000466_ref22
  article-title: Two-dimensional cross-spectrum of the streamwise velocity in turbulent boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.139
– volume: 928
  start-page: A27
  year: 2021
  ident: S0022112024000466_ref28
  article-title: Convolutional-network models to predict wall-bounded turbulence from wall quantities
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.812
– volume: 882
  start-page: A25
  year: 2020
  ident: S0022112024000466_ref7
  article-title: Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.834
– volume: 916
  start-page: A52
  year: 2021
  ident: S0022112024000466_ref13
  article-title: Extension of QSQH theory of scale interaction in near-wall turbulence to all velocity components
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.180
– ident: S0022112024000466_ref4
– volume: 774
  start-page: 395
  year: 2015
  ident: S0022112024000466_ref41
  article-title: Direct numerical simulation of turbulent channel flow up to $Re_\tau = 5200$
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.268
– volume: 30
  start-page: 115101
  year: 2018
  ident: S0022112024000466_ref56
  article-title: Turbulent boundary layer manipulation under a proportional-derivative closed-loop scheme
  publication-title: Phys. Fluids
  doi: 10.1063/1.5047537
– volume: 926
  start-page: A31
  year: 2021
  ident: S0022112024000466_ref62
  article-title: Reynolds stress scaling in the near-wall region of wall-bounded flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.736
– volume: 358
  start-page: 245
  year: 1998
  ident: S0022112024000466_ref40
  article-title: Suboptimal control of turbulent channel flow for drag reduction
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211209700815X
– volume: 585
  start-page: 1
  year: 2007
  ident: S0022112024000466_ref67
  article-title: Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007006076
– volume: 609
  start-page: 195
  year: 2008
  ident: S0022112024000466_ref38
  article-title: Statistical structure of the fluctuating wall pressure and its in-plane gradients at high Reynolds number
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008002541
– volume: 41
  start-page: 231
  year: 2009
  ident: S0022112024000466_ref37
  article-title: Microelectromechanical systems-based feedback control of turbulence for skin friction reduction
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165221
– volume: 26
  start-page: 055112
  year: 2014
  ident: S0022112024000466_ref8
  article-title: Proper orthogonal decomposition-based spectral higher-order stochastic estimation
  publication-title: Phys. Fluids
  doi: 10.1063/1.4879255
– volume: 15
  start-page: L41
  year: 2003
  ident: S0022112024000466_ref19
  article-title: Spectra of the very large anisotropic scales in turbulent channels
  publication-title: Phys. Fluids
  doi: 10.1063/1.1570830
– volume: 21
  start-page: 105404
  year: 2010
  ident: S0022112024000466_ref31
  article-title: Temperature corrections for constant temperature and constant current hot-wire anemometers
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/21/10/105404
– volume: 29
  start-page: 020712
  year: 2017
  ident: S0022112024000466_ref10
  article-title: Distance-from-the-wall scaling of turbulent motions in wall-bounded flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.4974354
– volume: 1
  start-page: 1054
  year: 1989
  ident: S0022112024000466_ref29
  article-title: Stochastic estimation of coherent structures in turbulent boundary layers
  publication-title: Phys. Fluids A
  doi: 10.1063/1.857396
SSID ssj0013097
Score 2.4821196
Snippet Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of...
SourceID osti
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Acoustic noise
Channel flow
Coherence
Control systems
Control systems design
Controllers
Correlation coefficient
Correlation coefficients
Direct numerical simulation
Fluctuations
Fluid flow
Fourier transforms
Friction
JFM Papers
Mechanics
Physics
Pressure
Real time
Reynolds number
Robust control
Scaling
Sensors
Spectral analysis
Spectrum analysis
State estimation
Systems analysis
Turbulence
Turbulent flow
Velocity
Velocity coupling
Wall pressure
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RS9xAEB7qiaAP2p4tPbWSB_FBiE2ym8vmSVpRRFCKKAg-hN3JLliO5GrukL71P_gP_SXOJHueUvEtkIENM7sz32xmvgHYyWVpkoQv3REFJSjGhUrQU6x1JkuBVltucD47H55cydPr9NpfuDW-rHLmE1tHXdbId-Tfk5ywfcrR5GD8J-SpUfx31Y_QWIBFcsGKkq_Fn0fnvy7m_xGiPJvxhROyiHyHHpNG_3bciJ7IffmKV-FVfOrVdM7-89Jt6Dn-CKseMwY_OiN_gg-26sOax4-BP51NH1ZekAv2Yakt7sRmHW4u7N-qHpVN2M3_CBoyDMkEtQvu9WgUtsWw0zv7-O-BS4iQkHmAPLbDF8oFt1UnaHgIE61JccpM23alz3B1fHR5eBL6oQohiqGYhFK4tDTaUt6lIiuGJhaxUUmZlUK5TBuHpowwkpgjEpSIUWuVW4WxwyhzSokv0Kvqyn6FQGBmOaGzlmIcRTltmM9PpYmKpFM2GsDus1oLfzSaoisrywrSf8H6L-RwAHsznRfoqcl5QsbobeGdZ-Fxx8jxttgmG68gIMFsuMhlQzgpklTFIpMD2JrZdP5l8y228f7rTVjmVdrO9ngLepO7qf1G2GRitv0GfALL6OVE
  priority: 102
  providerName: ProQuest
Title Reynolds-number scaling of wall-pressure–velocity correlations in wall-bounded turbulence
URI https://www.cambridge.org/core/product/identifier/S0022112024000466/type/journal_article
https://www.proquest.com/docview/2928756614
https://www.osti.gov/servlets/purl/2581374
Volume 981
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB21iZDgwEegIrREPlQckEzs3bW9PhZoWj4aoUKlSBxW3vFaKoqcKk6EuPEf-If8EmbsTUpFD5zsw8hezdieN943bwAOc1VaIfinO6KkAsVWoZZ0FhdFpkqJrnDc4Hw2TU8v1PtZMtuB2aYXhmmVW42Ddie_nY921cmfji_LjkPjltzjK6h6ESzSxVVeOuaflmMfAuMdvwt9wgwxlWX9dx9mJ9PrHYYozzZK4nwV37vHctLfKm5RF-qVuqG4cCNz9Rb0Bv7z_W6T0uQh3PdoMjjqVvEIdlw9gAceWQb-vW0GcO8v2cEB3Glpn9g8hq_n7ke9mJdN2E0GCRoKGdkEiyr4XsznYUuTXS_d75-_mFyEhNkD5IEenkIXXNadoeXxTHRPymB23TYyPYGLyfGXN6ehH7cQokzlKlSySkpbOKrIdORkamMZWy3KrJS6ygpboS0jjBTmiAQyYiwKnTuNcYVRVmkt96BXL2r3FAKJmeNSzznKfpT_CstKfzoROlKVdtEQXmzdanzEGtMRzjJD_jfsf6PSIbzc-NygFy3n2Rnz240Pt8ZXnVbH7Wb7HDxDEIN1cpEJRbgyItGxzNQQDjYxvV6ZyKmwTBjKPPvfle_DXT5ru9_jA-itlmv3nPDLyo5gV09ORtA_env28TMdXx9PP52P_AP6B4HX9TU
linkProvider Cambridge University Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VRYhy4GcBsbRADoUDUiCxnY1zQAgBy5b-HFArVeLgxhNbKlolpdlV1RvvwHvwUDwJM_npUlFx6y1SRnE0HvubsWe-AdjIVGGF4EN3REkBivWhlvQU53mqCokud1zgvLM7nu6rzwfJwQr86mthOK2y3xObjbqokM_IX4uMfPuE0eTt8feQu0bx7WrfQqM1iy13dkohW_1m8wPN73MhJh_33k_DrqtAiHIs56GSPils7ijw0JGTYxvL2GpRpIXUPs2tR1tEGCnMEAlLY8xznTmNscco9VpL-u41uK6kzHhF6cmn5a1FlKU9Ozn5MVFXD8gU1d88l70L9UpdYHG4gIaDilb1P5jQAN3kLtzuPNTgXWtS92DFlUO403mrQbcX1EO49ReV4RBuNKmkWN-Hr1_cWVnNijpsu40ENZkByQSVD07z2SxsUm8XJ-73j5-csIQUBwTITUK6tLzgqGwFLbd8ojEJFe2iKY56APtXouyHMCir0j2CQGLqOHx0jhCVMDW3zB6oE6Ej5bWLRvDiXK2mW4i1aZPYUkP6N6x_o8YjeNnr3GBHhM79OGaXC2-cCx-3_B-Xi63x5BlyW5h7FzlJCedGJDqWqRrBej-nyz9bGvTj_79-BjenezvbZntzd2sNVnnEpqY-XofB_GThnpBXNLdPG1MM4PCqbf8PcVYibw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reynolds-number+scaling+of+wall-pressure%E2%80%93velocity+correlations+in+wall-bounded+turbulence&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Baars%2C+Woutijn+J.&rft.au=Dacome%2C+Giulio&rft.au=Lee%2C+Myoungkyu&rft.date=2024-02-21&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=981&rft_id=info:doi/10.1017%2Fjfm.2024.46&rft.externalDocID=10_1017_jfm_2024_46
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon