Reynolds-number scaling of wall-pressure–velocity correlations in wall-bounded turbulence

Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 981
Main Authors Baars, Woutijn J., Dacome, Giulio, Lee, Myoungkyu
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 21.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$. Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$, the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$, and $p_w$ and $v$, respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-06CH11357
USDOE
None
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2024.46