Reynolds-number scaling of wall-pressure–velocity correlations in wall-bounded turbulence
Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the...
Saved in:
Published in | Journal of fluid mechanics Vol. 981 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
21.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Wall-pressure fluctuations are a practically robust input for real-time control systems aimed at modifying wall-bounded turbulence. The scaling behaviour of the wall-pressure–velocity coupling requires investigation to properly design a controller with such input data so that it can actuate upon the desired turbulent structures. A comprehensive database from direct numerical simulations (DNS) of turbulent channel flow is used for this purpose, spanning a Reynolds-number range $Re_\tau \approx 550\unicode{x2013}5200$. Spectral analysis reveals that the streamwise velocity is most strongly coupled to the linear term of the wall pressure, at a Reynolds-number invariant distance-from-the-wall scaling of $\lambda _x/y \approx 14$ (and $\lambda _x/y \approx 8$ for the wall-normal velocity). When extending the analysis to both homogeneous directions in $x$ and $y$, the peak coherence is centred at $\lambda _x/\lambda _z \approx 2$ and $\lambda _x/\lambda _z \approx 1$ for $p_w$ and $u$, and $p_w$ and $v$, respectively. A stronger coherence is retrieved when the quadratic term of the wall pressure is concerned, but there is only little evidence for a wall-attached-eddy type of scaling. An experimental dataset comprising simultaneous measurements of wall pressure and velocity complements the DNS-based findings at one value of $Re_\tau \approx 2$k, with ample evidence that the DNS-inferred correlations can be replicated with experimental pressure data subject to significant levels of (acoustic) facility noise. It is furthermore shown that velocity-state estimations can be achieved with good accuracy by including both the linear and quadratic terms of the wall pressure. An accuracy of up to 72 % in the binary state of the streamwise velocity fluctuations in the logarithmic region is achieved; this corresponds to a correlation coefficient of $\approx$0.6. This thus demonstrates that wall-pressure sensing for velocity-state estimation – e.g. for use in real-time control of wall-bounded turbulence – has merit in terms of its realization at a range of Reynolds numbers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-06CH11357 USDOE None |
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2024.46 |