Adaptive Fuzzy Control for Nonstrict-Feedback Systems With Input Saturation and Output Constraint

This paper presents an adaptive fuzzy control approach for a category of uncertain nonstrict-feedback systems with input saturation and output constraint. A variable separation approach is introduced to overcome the difficulty arising from the nonstrict-feedback structure. The problem of input satur...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 47; no. 1; pp. 1 - 12
Main Authors Zhou, Qi, Wang, Lijie, Wu, Chengwei, Li, Hongyi, Du, Haiping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents an adaptive fuzzy control approach for a category of uncertain nonstrict-feedback systems with input saturation and output constraint. A variable separation approach is introduced to overcome the difficulty arising from the nonstrict-feedback structure. The problem of input saturation is solved by introducing an auxiliary design system, and output constraint is handled by utilizing a barrier Lyapunov function. Combing fuzzy logic system with the adaptive backstepping technique, the semi-global boundedness of all variables in the closed-loop systems is guaranteed, and the tracking error is driven to the origin with a small neighborhood. The stability of the closed-loop systems is proved, and the simulation results reveal the effectiveness of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2168-2216
2168-2232
DOI:10.1109/TSMC.2016.2557222