Vertical Structure and Dynamical Properties during Snow Events in Middle Latitudes of China from Observations by the C-band Vertically Pointing Radar

Data from the continuous observations of four shallow snow events (echo top < 8 km) and two deep events (> 10 km) were obtained using the C-band vertically pointing radar with frequency-modulation continuous-wave technology with extremely high resolution during the winter of 2015–2016 in middl...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Meteorological Society of Japan Vol. 98; no. 3; pp. 527 - 550
Main Authors CUI, Ye, RUAN, Zheng, WEI, Ming, LI, Feng, GE, Runsheng
Format Journal Article
LanguageEnglish
Published Meteorological Society of Japan 2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Data from the continuous observations of four shallow snow events (echo top < 8 km) and two deep events (> 10 km) were obtained using the C-band vertically pointing radar with frequency-modulation continuous-wave technology with extremely high resolution during the winter of 2015–2016 in middle latitudes of China. Snow-generating cells (GCs) were found near the cloud top in each event. Reflectivity (Z), radial velocity (Vr), and the vertical gradients of Z (dZ/dh, where h is the vertical distance) and Vr (dVr/dh) showed different vertical distribution characteristics between the upper GC and lower stratiform regions (St regions). Fall streaks (FSs) associated with GCs were embedded in the St regions. In the deep events, the proportions of GC regions were slightly larger, but the average contributions to the growth of Z (33 %) were lower than those in the shallow events (42 %). The average d Z /dh values were usually two to three times larger inside GCs and FSs compared to outside. Bimodal Doppler spectra were used to establish the relationships between Z and the reflectivity-weighted particle fall speed (Vz) for the two regions. The vertical air velocity (Wa) and Vz were then retrieved, and the results showed that both the updraft and the downdraft were alternately observed in GC regions. GC locations were usually accompanied by strong upward air motion, with average speeds mostly distributed around 1.2 m s−1, whereas downward air motion often appeared between GCs. In the St regions, the speeds of Wa were mainly within 0.5 m s−1. The upper areas of the St regions consisted primarily of weak upward motion, whereas weak downward motion dominated the lower areas. There was no apparent difference in Wa inside and outside the FSs. The average Vz was slightly larger inside GCs and FSs compared to outside, with a difference of 0.1–0.3 m s−1 and 0.2–0.4 m s−1, respectively.
ISSN:0026-1165
2186-9057
DOI:10.2151/jmsj.2020-028