Selenium Decreases the Cadmium Content in Brown Rice: Foliar Se Application to Plants Grown in Cd-contaminated Soil

Cadmium (Cd) contamination in agricultural soils has become a serious issue owing to its high toxicity threat to human health through the food chain. The purpose of this paper is to explore the availability of foliar selenium (Se) application in reducing Cd enrichment in brown rice. A field experime...

Full description

Saved in:
Bibliographic Details
Published inJournal of soil science and plant nutrition Vol. 22; no. 1; pp. 1033 - 1043
Main Authors Jiang, Shuochen, Du, Bin, Wu, Qixia, Zhang, Haiwei, Deng, Youyu, Tang, Xiangru, Zhu, Jianqiang
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cadmium (Cd) contamination in agricultural soils has become a serious issue owing to its high toxicity threat to human health through the food chain. The purpose of this paper is to explore the availability of foliar selenium (Se) application in reducing Cd enrichment in brown rice. A field experiment from 2017 to 2019 was conducted to investigate the effects of foliar Se application on the physiology and yields of three rice cultivars and their accumulation of Cd in low-Cd and high-Cd soils. The grain protein contents and yields of rice plants grown in the high-Cd soil were lower than those of plants cultivated in the low-Cd soil by 27.85% and 6.82%, whereas the malondialdehyde (MDA) and Cd contents were higher by 66.06% and 91.47%, respectively. Se application reduced Cd translocation from the stems and leaves to the spikes, decreasing the Cd content in brown rice by 40.36%. Additionally, Se enhanced the antioxidative activity, glutathione and protein contents, and rice yield (7.58%) and decreased the MDA and proline contents. However, these Se effects weakened under the high-Cd soil. Foliar Se application can alleviate Cd-induced physiological stress in brown rice while improving its yield and reducing its Cd content.
ISSN:0718-9508
0718-9516
DOI:10.1007/s42729-021-00711-w