Driftfusion: an open source code for simulating ordered semiconductor devices with mixed ionic-electronic conducting materials in one dimension

The recent emergence of lead-halide perovskites as active layer materials for thin film semiconductor devices including solar cells, light emitting diodes, and memristors has motivated the development of several new drift-diffusion models that include the effects of both electronic and mobile ionic...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational electronics Vol. 21; no. 4; pp. 960 - 991
Main Authors Calado, Philip, Gelmetti, Ilario, Hilton, Benjamin, Azzouzi, Mohammed, Nelson, Jenny, Barnes, Piers R. F.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The recent emergence of lead-halide perovskites as active layer materials for thin film semiconductor devices including solar cells, light emitting diodes, and memristors has motivated the development of several new drift-diffusion models that include the effects of both electronic and mobile ionic charge carriers. In this work we introduce Driftfusion, a versatile simulation tool built for modelling one-dimensional ordered semiconductor devices with mixed ionic-electronic conducting layers. Driftfusion enables users to model devices with multiple, distinct, material layers using up to four charge carrier species: electrons and holes plus up to two ionic species. The time-dependent carrier continuity equations are coupled to Poisson’s equation enabling transient optoelectronic device measurement protocols to be simulated. In addition to material and device-wide properties, users have direct access to adapt the physical models for carrier transport, generation and recombination. Furthermore, a discrete interlayer interface approach circumvents the requirement for boundary conditions at material interfaces and enables interface-specific properties to be introduced.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1569-8025
1572-8137
DOI:10.1007/s10825-021-01827-z