Highly porous, water‐swellable, and reusable chelating polymeric gels for heavy metal ion removal from aqueous waste

Sequestration and removal of heavy metal ions from aqueous solutions pose multiple challenges. Ease of synthesis, high adsorption capacity and ease of regeneration are important considerations in the design of polymeric adsorbent materials developed for this purpose. To meet this objective, a new ap...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science Vol. 138; no. 46
Main Authors Tyagi, Reshu, Jacob, Josemon
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 10.12.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sequestration and removal of heavy metal ions from aqueous solutions pose multiple challenges. Ease of synthesis, high adsorption capacity and ease of regeneration are important considerations in the design of polymeric adsorbent materials developed for this purpose. To meet this objective, a new approach was used to design and synthesize a highly porous polystyrene‐based resin (IDASR15) bearing iminodiacetate functional groups in every repeat unit by free radical polymerization with N, N'‐methylenebisacrylamide as crosslinker followed by base hydrolysis. The physiochemical chemical properties of the resin were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, equilibrium swelling value (ESV) and thermogravimetric analysis. Metal uptake capacity of IDASR15 towards low concentrations of various toxic heavy metal ions such as Cu2+, Cd2+, Mn2+, Zn2+, Pb2+, Ni2+, Co2+, Co3+, Cr3+, Fe2+, Fe3+, and Al3+ were investigated from their aqueous solution by batch method and found to be 0.943–2.802 mmol/g. The maximum capacity was 2.802 mmol/g obtained for Cu2+ ion at pH 5. The potential for regeneration and reuse has been demonstrated with Cu2+ ion by batch and column methods. The reported results suggest that IDASR15 is a highly efficient and porous complexing agent for commonly found toxic metal ions in aqueous streams with a high ESV of 68.55 g of water/1.0 g of IDASR15. It could also be reused ~99.5% of adsorption efficiency which is very promising and holds significant potential for waste‐water treatment applications. Highly porous, water‐swellable, reusable Iminodiacetate functionalized chelating polymeric gels capable of sequestering commonly found toxic metal ions from aqueous waste were synthesized by free radical polymerization. These gels were investigated for their adsorption capacity with various metal ions from their aqueous solution and found to be excellent materials for waste water treatment applications.
Bibliography:Funding information
Science and Engineering Research Board, Department of Science and Technology, India, Grant/Award Number: CRG/2018/001488
ISSN:0021-8995
1097-4628
DOI:10.1002/app.51353