PSD95 Gene Specific siRNAs Attenuate Neuropathic Pain through Modulating Neuron Sensibility and Postsynaptic CaMKIIα Phosphorylation

Objective To observe the effects of PSD95 gene specific siRNAs on neuropathic pain relief, neuron viability, and postsynaptic calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) phosphorylation in vitro and in vivo. Methods Gene-specific siRNAs of rat PSD95 were synthesized chemically for tran...

Full description

Saved in:
Bibliographic Details
Published inChinese medical sciences journal Vol. 26; no. 4; pp. 201 - 207
Main Authors Shen, Le, Li, Xu, Chen, Wen, Xu, Li, Liu, Wei, Yu, Xue-rong, Huang, Yu-guang
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.12.2011
Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective To observe the effects of PSD95 gene specific siRNAs on neuropathic pain relief, neuron viability, and postsynaptic calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) phosphorylation in vitro and in vivo. Methods Gene-specific siRNAs of rat PSD95 were synthesized chemically for transfection. Adult male Sprague-Dawley (SD) rats were randomly divided into 3 groups: nave group (n=6), sham group (n=6), and sciatic nerve chronic constriction injury (CCI) group (n=24). The CCI group was further divided into 4 groups (n=6 in each group), which were pretreated with normal saline, transfection vehicle, negative control siRNAs, and PSD95 gene specific siRNAs respectively. All the subgroups received corresponding agents intrathecally for 3 days, started one day before the CCI of sciatic nerve. Both mechanical allodynia and thermal hyperalgesia were measured on post-operative day 3 and 7. PSD95 gene silenced NG108-15 cells were further stimulated by glutamate, with the cell viability and the expression/phosphorylation of CaMKIIα measured by MTT cell proliferation assay and Western blot, respectively. Results The siRNAs decreased PSD95 mRNA level significantly both in vivo and in vitro. Neuropathic pain rats pretreated with PSD95 gene specific siRNAs exhibited significant elevation in the mechanical withdrawal threshold and paw withdrawal thermal latency, without affecting the baseline nociception. PSD95 gene silencing enhanced neuronal tolerance against the glutamate excitotoxicity, meanwhile the phosphorylation of CaMKIIα Thr286 was attenuated. Conclusion Pre-emptive administration of PSD95 gene specific siRNAs may attenuate the central sensitization CaMKIIα-related signaling cascades, leading to the relief of neuropathic pain.
Bibliography:PSD95; siRNAs; neuropathic pain; glutamate excitotoxicity; calcium/calmodulin- dependent protein kinase IItt
Objective To observe the effects of PSD95 gene specific siRNAs on neuropathic pain relief, neuron viability, and postsynaptic calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) phosphorylation in vitro and in vivo. Methods Gene-specific siRNAs of rat PSD95 were synthesized chemically for transfection. Adult male Sprague-Dawley (SD) rats were randomly divided into 3 groups: nave group (n=6), sham group (n=6), and sciatic nerve chronic constriction injury (CCI) group (n=24). The CCI group was further divided into 4 groups (n=6 in each group), which were pretreated with normal saline, transfection vehicle, negative control siRNAs, and PSD95 gene specific siRNAs respectively. All the subgroups received corresponding agents intrathecally for 3 days, started one day before the CCI of sciatic nerve. Both mechanical allodynia and thermal hyperalgesia were measured on post-operative day 3 and 7. PSD95 gene silenced NG108-15 cells were further stimulated by glutamate, with the cell viability and the expression/phosphorylation of CaMKIIα measured by MTT cell proliferation assay and Western blot, respectively. Results The siRNAs decreased PSD95 mRNA level significantly both in vivo and in vitro. Neuropathic pain rats pretreated with PSD95 gene specific siRNAs exhibited significant elevation in the mechanical withdrawal threshold and paw withdrawal thermal latency, without affecting the baseline nociception. PSD95 gene silencing enhanced neuronal tolerance against the glutamate excitotoxicity, meanwhile the phosphorylation of CaMKIIα Thr286 was attenuated. Conclusion Pre-emptive administration of PSD95 gene specific siRNAs may attenuate the central sensitization CaMKIIα-related signaling cascades, leading to the relief of neuropathic pain.
11-2752/R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-9294
DOI:10.1016/S1001-9294(12)60001-7