Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network
In recent years, deep learning has emerged as a powerful tool for developing Brain–Computer Interface (BCI) systems. However, for deep learning models trained entirely on the data from a specific individual, the performance increase has only been marginal owing to the limited availability of subject...
Saved in:
Published in | Neural networks Vol. 136; pp. 1 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In recent years, deep learning has emerged as a powerful tool for developing Brain–Computer Interface (BCI) systems. However, for deep learning models trained entirely on the data from a specific individual, the performance increase has only been marginal owing to the limited availability of subject-specific data. To overcome this, many transfer-based approaches have been proposed, in which deep networks are trained using pre-existing data from other subjects and evaluated on new target subjects. This mode of transfer learning however faces the challenge of substantial inter-subject variability in brain data. Addressing this, in this paper, we propose 5 schemes for adaptation of a deep convolutional neural network (CNN) based electroencephalography (EEG)-BCI system for decoding hand motor imagery (MI). Each scheme fine-tunes an extensively trained, pre-trained model and adapt it to enhance the evaluation performance on a target subject. We report the highest subject-independent performance with an average (N=54) accuracy of 84.19% (±9.98%) for two-class motor imagery, while the best accuracy on this dataset is 74.15% (±15.83%) in the literature. Further, we obtain a statistically significant improvement (p=0.005) in classification using the proposed adaptation schemes compared to the baseline subject-independent model. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-6080 1879-2782 1879-2782 |
DOI: | 10.1016/j.neunet.2020.12.013 |