Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage

We assessed the role of A79G, a polymorphism of the myoglobin gene (MB), in susceptibility to exercise-induced skeletal muscle damage. Between January 2012 and December 2014, a total of 166 cases with exercise-induced skeletal muscle damage and 166 controls were recruited into our study. Genotyping...

Full description

Saved in:
Bibliographic Details
Published inGenetics and molecular research Vol. 15; no. 2
Main Authors Cui, T, Jiang, M S
Format Journal Article
LanguageEnglish
Published Brazil 23.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We assessed the role of A79G, a polymorphism of the myoglobin gene (MB), in susceptibility to exercise-induced skeletal muscle damage. Between January 2012 and December 2014, a total of 166 cases with exercise-induced skeletal muscle damage and 166 controls were recruited into our study. Genotyping of MB A79G was carried out using polymerase chain reaction coupled with restriction fragment length polymorphism. Using unconditional logistic regression analysis, we found that the GG genotype of MB A79G was associated with higher risk of exercise-induced muscle damage compared with the wild-type genotype, and the OR (95%CI) was 2.91 (1.20-7.59). Compared with the AA genotype, the AG+GG genotype was associated with a significantly increased risk of exercise-induced muscle damage for those with blood lactic acid ≥1.80 mM (OR = 2.05; 95%CI = 1.09-3.88). In conclusion, we found that the A79G polymorphism of the MB gene plays an important role in influencing the development of exercise-induced skeletal muscle damage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1676-5680
1676-5680
DOI:10.4238/gmr.15027506