Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser
Near-infrared nanowire lasers are promising as ultrasmall, low-consumption light emitters in on-chip optical communications and computing systems. Here, we report on a room-temperature near-infrared nanolaser based on an AlGaAs/GaAs nanowire/single-quantum-well heterostructure grown by Au-catalyzed...
Saved in:
Published in | Applied physics letters Vol. 110; no. 6 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
06.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Near-infrared nanowire lasers are promising as ultrasmall, low-consumption light emitters in on-chip optical communications and computing systems. Here, we report on a room-temperature near-infrared nanolaser based on an AlGaAs/GaAs nanowire/single-quantum-well heterostructure grown by Au-catalyzed metal organic chemical vapor deposition. When subjects to pulsed optical excitation, the nanowire exhibits lasing, with a low threshold of 600 W/cm2, a narrow linewidth of 0.39 nm, and a high Q factor of 2000 at low temperature. Lasing is observed up to 300 K, with an ultrasmall temperature dependent wavelength shift of 0.045 nm/K. This work paves the way towards ultrasmall, low-consumption, and high-temperature-stability near-infrared nanolasers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4975780 |