A nonnegative matrix factorization algorithm based on a discrete-time projection neural network
This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is propo...
Saved in:
Published in | Neural networks Vol. 103; pp. 63 - 71 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm. |
---|---|
AbstractList | This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm. This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm.This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm. |
Author | Wang, Jun Che, Hangjun |
Author_xml | – sequence: 1 givenname: Hangjun surname: Che fullname: Che, Hangjun email: hjche2-c@my.city.edu.hk.com – sequence: 2 givenname: Jun orcidid: 0000-0002-1305-5735 surname: Wang fullname: Wang, Jun email: jwang.cs@cityu.edu.hk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29642020$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1PGzEUtKqgktD-A1Ttkctun-1d724PSBEqtBISF3q2vPYzddiP1HYC5dfjkOTSQzk9vaeZ0byZBZmN04iEnFMoKFDxdVWMuBkxFgxoUwAvAPgHMqdN3easbtiMzKFpeS6ggVOyCGEFAKIp-UdyylpRMmAwJ3KZJd0RH1R0W8wGFb17zqzScfLuJR2nMVP9Q1ri7yHrVECT7U6ZcUF7jJhHN2C29tMK9Rs6ufKqTyM-Tf7xEzmxqg_4-TDPyK_r7_dXP_Lbu5ufV8vbXHPBYo6m7jSFTgmwQtW07qwQhlcCLbPGilqUlhqO1IiqrRk0vLWV6ZQFrbUwHT8jF3vd5OTPBkOUQzKIfa9GnDZBpm_LsoaKVgn65QDddAMaufZuUP6vPIaSAN_2AO2nEDxaqV18iyJ65XpJQe4akCu5b0DuGpDAZWogkct_yEf9d2iXexqmkLYOvQza4ajROJ-ClWZy_xd4Bf08pGA |
CitedBy_id | crossref_primary_10_1137_23M1627304 crossref_primary_10_1016_j_nahs_2020_100881 crossref_primary_10_1007_s12555_021_0236_4 crossref_primary_10_1109_TNNLS_2021_3125457 crossref_primary_10_3390_math11132940 crossref_primary_10_1109_TNNLS_2020_2973760 crossref_primary_10_1016_j_engappai_2024_108274 crossref_primary_10_1109_TCYB_2021_3102941 crossref_primary_10_1155_2022_7665954 crossref_primary_10_1155_2022_4134864 crossref_primary_10_1109_TCYB_2021_3051035 crossref_primary_10_1016_j_compeleceng_2024_109827 crossref_primary_10_1007_s00521_018_3608_9 crossref_primary_10_1016_j_neunet_2022_06_006 crossref_primary_10_1109_TSMC_2023_3331260 crossref_primary_10_3934_mbe_2023556 crossref_primary_10_1016_j_neunet_2024_106348 crossref_primary_10_1109_TNNLS_2019_2957105 crossref_primary_10_1007_s00521_022_07200_w crossref_primary_10_1016_j_apnum_2024_07_010 crossref_primary_10_1109_TCSS_2023_3296479 crossref_primary_10_3390_electronics13030659 crossref_primary_10_1007_s12652_019_01550_5 crossref_primary_10_1016_j_neunet_2021_03_039 crossref_primary_10_1155_2022_7104750 crossref_primary_10_26599_BDMA_2024_9020055 crossref_primary_10_1155_2022_1973777 crossref_primary_10_1162_neco_a_01294 crossref_primary_10_1155_2022_5813577 crossref_primary_10_1016_j_neunet_2019_02_002 crossref_primary_10_1016_j_neunet_2022_10_018 crossref_primary_10_1109_TNNLS_2018_2884788 crossref_primary_10_1155_2022_3345037 crossref_primary_10_1109_TCE_2023_3301067 crossref_primary_10_1109_TCYB_2021_3090204 crossref_primary_10_1007_s11063_021_10628_1 crossref_primary_10_1109_TNNLS_2019_2918984 crossref_primary_10_1016_j_neunet_2021_01_012 crossref_primary_10_3934_mmc_2023025 crossref_primary_10_1155_2022_8005321 crossref_primary_10_1155_2022_4282569 crossref_primary_10_1016_j_neunet_2023_02_016 crossref_primary_10_1016_j_neunet_2024_106801 crossref_primary_10_1109_TETCI_2024_3400852 crossref_primary_10_1016_j_sigpro_2023_109341 crossref_primary_10_1016_j_neunet_2024_106323 crossref_primary_10_1016_j_ins_2023_03_119 crossref_primary_10_1109_TSC_2021_3069108 crossref_primary_10_1016_j_neunet_2022_07_018 |
Cites_doi | 10.1162/neco.2008.04-08-771 10.1162/neco.2007.19.10.2756 10.1016/j.neunet.2014.09.009 10.1016/0893-6080(94)90041-8 10.1109/TSP.2012.2190406 10.1109/TNN.2006.879774 10.1109/TNNLS.2015.2481006 10.1038/44565 10.1016/j.neunet.2004.05.006 10.1109/TNNLS.2013.2244908 10.1016/j.neunet.2013.11.007 10.1109/TNNLS.2016.2524619 10.1109/TCSI.2004.830694 10.1137/07069239X 10.1109/TNNLS.2016.2582381 10.1109/TNNLS.2016.2549566 10.1109/TPAMI.2010.231 10.1016/j.neucom.2015.04.033 10.1109/TNNLS.2013.2280905 10.1007/s00186-007-0161-1 10.1162/neco.2007.03-07-488 10.1016/j.neunet.2014.03.006 10.1016/j.patcog.2017.02.020 10.1162/NECO_a_00029 10.1016/j.neunet.2016.04.010 10.1023/A:1004611224835 10.1016/j.neucom.2013.01.025 10.1109/TGRS.2016.2535298 10.1016/j.csda.2006.11.006 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neunet.2018.03.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 71 |
ExternalDocumentID | 29642020 10_1016_j_neunet_2018_03_003 S089360801830087X |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61673330 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Research Grants Council, Hong Kong grantid: 14207614; 11208517 funderid: http://dx.doi.org/10.13039/501100002920 |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c362t-ed7bc10ba60f6a717bf66d356ef2fdf6764f1d3e1d659720839f5dbaf0ccc6db3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Fri Jul 11 07:15:23 EDT 2025 Thu Apr 03 07:06:25 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 01:24:32 EDT 2025 Fri Feb 23 02:28:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biconvex optimization Nonnegative matrix factorization Discrete-time projection neural network |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c362t-ed7bc10ba60f6a717bf66d356ef2fdf6764f1d3e1d659720839f5dbaf0ccc6db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1305-5735 |
PMID | 29642020 |
PQID | 2024470515 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2024470515 pubmed_primary_29642020 crossref_citationtrail_10_1016_j_neunet_2018_03_003 crossref_primary_10_1016_j_neunet_2018_03_003 elsevier_sciencedirect_doi_10_1016_j_neunet_2018_03_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 2018-Jul 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cichocki, Zdunek, Amari (b7) 2006 Berry, Browne, Langville, Pauca, Plemmons (b2) 2007; 52 Guan, Tao, Luo, Yuan (b11) 2012; 60 Fvotte, Bertin, Durrieu (b9) 2009; 21 Nakano, Kameoka, Le Roux, Kitano, Ono, Sagayama (b28) 2010 Yan, Wang, Li (b35) 2014; 55 Fan, Wang (b8) 2017; 28 Kim, Park (b14) 2008; 30 Hu, Wang (b13) 2006; 17 Liu, Wang (b23) 2008; 20 Liu, Wang (b26) 2016; 27 Che, Li, He, Huang (b5) 2015; 167 Liu, Yang, Wang (b27) 2017; 28 Boyd, Vandenberghe (b3) 2004 Che, Li, He, Huang (b6) 2016; 80 Liu, Cao, Chen (b22) 2010; 22 Cai, He, Han, Huang (b4) 2011; 33 Wang (b30) 1994; 7 Qin, Bian, Xue (b29) 2013; 120 Zhu, Honeine (b37) 2016; 54 Lee, Seung (b18) 2001 Gorski, Pfeuffer, Klamroth (b10) 2007; 66 Kim, Park (b15) 2008 Li, Yan, Wang (b20) 2015; 61 Lin (b21) 2007; 19 Xia, Wang (b32) 2000; 106 He, Li, Huang, Li, Huang (b12) 2014; 25 Xia, Feng, Wang (b31) 2004; 17 Liu, Wang (b24) 2011; 41 Liu, Wang (b25) 2013; 24 Xia, Wang (b33) 2004; 51 Li, Yan, Wang (b19) 2014; 50 Arabnejad, Moghaddam, Cheriet (b1) 2017; 67 Kinderlehrer, Stampacchia (b16) 1980 Lee, Seung (b17) 1999; 401 Yan, Fan, Wang (b34) 2017; 28 Fan (10.1016/j.neunet.2018.03.003_b8) 2017; 28 Lee (10.1016/j.neunet.2018.03.003_b17) 1999; 401 Liu (10.1016/j.neunet.2018.03.003_b23) 2008; 20 Cai (10.1016/j.neunet.2018.03.003_b4) 2011; 33 Hu (10.1016/j.neunet.2018.03.003_b13) 2006; 17 Kim (10.1016/j.neunet.2018.03.003_b14) 2008; 30 Li (10.1016/j.neunet.2018.03.003_b20) 2015; 61 Liu (10.1016/j.neunet.2018.03.003_b27) 2017; 28 Xia (10.1016/j.neunet.2018.03.003_b32) 2000; 106 Yan (10.1016/j.neunet.2018.03.003_b34) 2017; 28 Zhu (10.1016/j.neunet.2018.03.003_b37) 2016; 54 Che (10.1016/j.neunet.2018.03.003_b6) 2016; 80 Nakano (10.1016/j.neunet.2018.03.003_b28) 2010 Cichocki (10.1016/j.neunet.2018.03.003_b7) 2006 He (10.1016/j.neunet.2018.03.003_b12) 2014; 25 Wang (10.1016/j.neunet.2018.03.003_b30) 1994; 7 Liu (10.1016/j.neunet.2018.03.003_b25) 2013; 24 Kinderlehrer (10.1016/j.neunet.2018.03.003_b16) 1980 Lee (10.1016/j.neunet.2018.03.003_b18) 2001 Qin (10.1016/j.neunet.2018.03.003_b29) 2013; 120 Li (10.1016/j.neunet.2018.03.003_b19) 2014; 50 Gorski (10.1016/j.neunet.2018.03.003_b10) 2007; 66 Xia (10.1016/j.neunet.2018.03.003_b33) 2004; 51 Xia (10.1016/j.neunet.2018.03.003_b31) 2004; 17 Liu (10.1016/j.neunet.2018.03.003_b24) 2011; 41 Liu (10.1016/j.neunet.2018.03.003_b26) 2016; 27 Che (10.1016/j.neunet.2018.03.003_b5) 2015; 167 Lin (10.1016/j.neunet.2018.03.003_b21) 2007; 19 Kim (10.1016/j.neunet.2018.03.003_b15) 2008 Berry (10.1016/j.neunet.2018.03.003_b2) 2007; 52 Guan (10.1016/j.neunet.2018.03.003_b11) 2012; 60 Fvotte (10.1016/j.neunet.2018.03.003_b9) 2009; 21 Arabnejad (10.1016/j.neunet.2018.03.003_b1) 2017; 67 Liu (10.1016/j.neunet.2018.03.003_b22) 2010; 22 Yan (10.1016/j.neunet.2018.03.003_b35) 2014; 55 Boyd (10.1016/j.neunet.2018.03.003_b3) 2004 |
References_xml | – volume: 7 start-page: 629 year: 1994 end-page: 641 ident: b30 article-title: A deterministic annealing neural network for convex programming publication-title: Neural Networks – start-page: 353 year: 2008 end-page: 362 ident: b15 article-title: Toward faster nonnegative matrix factorization. A new algorithm and comparisons publication-title: Proceedings eighth IEEE international conference on data mining – start-page: 283 year: 2010 end-page: 288 ident: b28 article-title: Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with publication-title: 2010 IEEE international workshop on machine learning for signal processing – volume: 106 start-page: 129 year: 2000 end-page: 150 ident: b32 article-title: On the stability of globally projected dynamical systems publication-title: Journal of Optimization Theory and Applications – volume: 55 start-page: 20 year: 2014 end-page: 29 ident: b35 article-title: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization publication-title: Neural Networks – volume: 60 start-page: 2882 year: 2012 end-page: 2898 ident: b11 article-title: NeNMF: an optimal gradient method for nonnegative matrix factorization publication-title: IEEE Transactions on Signal Processing – volume: 25 start-page: 824 year: 2014 end-page: 830 ident: b12 article-title: A recurrent neural network for solving bilevel linear programming problem publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 1980 ident: b16 article-title: An introduction to variational inequalities and their applications – volume: 21 start-page: 793 year: 2009 end-page: 830 ident: b9 article-title: Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis publication-title: Neural Computation – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: b17 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 30 start-page: 713 year: 2008 end-page: 730 ident: b14 article-title: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method publication-title: SIAM Journal on Matrix Analysis and Applications – start-page: 556 year: 2001 end-page: 562 ident: b18 article-title: Algorithms for non-negative matrix factorization publication-title: Advances in neural information processing systems, Vol. 13 – year: 2004 ident: b3 article-title: Convex optimization – volume: 24 start-page: 812 year: 2013 end-page: 824 ident: b25 article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 17 start-page: 1003 year: 2004 end-page: 1015 ident: b31 article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations publication-title: Neural Networks – volume: 54 start-page: 4012 year: 2016 end-page: 4022 ident: b37 article-title: Biobjective nonnegative matrix factorization: Linear versus kernel-based models publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 167 start-page: 569 year: 2015 end-page: 577 ident: b5 article-title: An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization publication-title: Neurocomputing – volume: 51 start-page: 1385 year: 2004 end-page: 1394 ident: b33 article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers – volume: 61 start-page: 10 year: 2015 end-page: 21 ident: b20 article-title: A one-layer recurrent neural network for constrained nonconvex optimization publication-title: Neural Networks – volume: 28 start-page: 1747 year: 2017 end-page: 1758 ident: b27 article-title: A collective neurodynamic approach to distributed constrained optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 50 start-page: 79 year: 2014 end-page: 89 ident: b19 article-title: A one-layer recurrent neural network for constrained nonsmooth invex optimization publication-title: Neural Networks – volume: 52 start-page: 155 year: 2007 end-page: 173 ident: b2 article-title: Algorithms and applications for approximate nonnegative matrix factorization publication-title: Computational Statistics & Data Analysis – volume: 33 start-page: 1548 year: 2011 end-page: 1560 ident: b4 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 32 year: 2006 end-page: 39 ident: b7 article-title: Csiszars divergences for non-negative matrix factorization. Family of new algorithms publication-title: International conference on independent component analysis and signal separation – volume: 22 start-page: 2962 year: 2010 end-page: 2978 ident: b22 article-title: A novel recurrent neural network with finite-time convergence for linear programming publication-title: Neural Computation – volume: 20 start-page: 1366 year: 2008 end-page: 1383 ident: b23 article-title: A one-layer recurrent neural network with a discontinuous activation function for linear programming publication-title: Neural Computation – volume: 80 start-page: 110 year: 2016 end-page: 117 ident: b6 article-title: A recurrent neural network for adaptive beamforming and array correction publication-title: Neural Networks – volume: 66 start-page: 373 year: 2007 end-page: 407 ident: b10 article-title: Biconvex sets and optimization with biconvex functions: a survey and extensions publication-title: Mathematical Methods of Operations Research – volume: 17 start-page: 1487 year: 2006 end-page: 1499 ident: b13 article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network publication-title: IEEE Transactions on Neural Networks – volume: 28 start-page: 1206 year: 2017 end-page: 1215 ident: b34 article-title: A collective neurodynamic approach to constrained global optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 28 start-page: 2344 year: 2017 end-page: 2356 ident: b8 article-title: A collective neurodynamic optimization approach to nonnegative matrix factorization publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 67 start-page: 328 year: 2017 end-page: 339 ident: b1 article-title: PSI: Patch-based script identification using non-negative matrix factorization publication-title: Pattern Recognition – volume: 41 start-page: 1323 year: 2011 end-page: 1333 ident: b24 article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – volume: 27 start-page: 698 year: 2016 end-page: 707 ident: b26 article-title: L1-minimization algorithms for sparse signal reconstruction based on a projection neural network publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 120 start-page: 655 year: 2013 end-page: 662 ident: b29 article-title: A new one-layer recurrent neural network for nonsmooth pseudoconvex optimization publication-title: Neurocomputing – volume: 19 start-page: 2756 year: 2007 end-page: 2779 ident: b21 article-title: Projected gradient methods for nonnegative matrix factorization publication-title: Neural Computation – volume: 21 start-page: 793 issue: 3 year: 2009 ident: 10.1016/j.neunet.2018.03.003_b9 article-title: Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis publication-title: Neural Computation doi: 10.1162/neco.2008.04-08-771 – volume: 19 start-page: 2756 issue: 10 year: 2007 ident: 10.1016/j.neunet.2018.03.003_b21 article-title: Projected gradient methods for nonnegative matrix factorization publication-title: Neural Computation doi: 10.1162/neco.2007.19.10.2756 – volume: 61 start-page: 10 year: 2015 ident: 10.1016/j.neunet.2018.03.003_b20 article-title: A one-layer recurrent neural network for constrained nonconvex optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.009 – volume: 7 start-page: 629 issue: 4 year: 1994 ident: 10.1016/j.neunet.2018.03.003_b30 article-title: A deterministic annealing neural network for convex programming publication-title: Neural Networks doi: 10.1016/0893-6080(94)90041-8 – volume: 60 start-page: 2882 issue: 6 year: 2012 ident: 10.1016/j.neunet.2018.03.003_b11 article-title: NeNMF: an optimal gradient method for nonnegative matrix factorization publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2012.2190406 – volume: 17 start-page: 1487 issue: 6 year: 2006 ident: 10.1016/j.neunet.2018.03.003_b13 article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.879774 – year: 2004 ident: 10.1016/j.neunet.2018.03.003_b3 – volume: 27 start-page: 698 issue: 3 year: 2016 ident: 10.1016/j.neunet.2018.03.003_b26 article-title: L1-minimization algorithms for sparse signal reconstruction based on a projection neural network publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2481006 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.neunet.2018.03.003_b17 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 17 start-page: 1003 issue: 7 year: 2004 ident: 10.1016/j.neunet.2018.03.003_b31 article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations publication-title: Neural Networks doi: 10.1016/j.neunet.2004.05.006 – volume: 24 start-page: 812 issue: 5 year: 2013 ident: 10.1016/j.neunet.2018.03.003_b25 article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2244908 – volume: 50 start-page: 79 year: 2014 ident: 10.1016/j.neunet.2018.03.003_b19 article-title: A one-layer recurrent neural network for constrained nonsmooth invex optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2013.11.007 – volume: 28 start-page: 1206 issue: 5 year: 2017 ident: 10.1016/j.neunet.2018.03.003_b34 article-title: A collective neurodynamic approach to constrained global optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2524619 – volume: 51 start-page: 1385 issue: 7 year: 2004 ident: 10.1016/j.neunet.2018.03.003_b33 article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers doi: 10.1109/TCSI.2004.830694 – volume: 30 start-page: 713 issue: 2 year: 2008 ident: 10.1016/j.neunet.2018.03.003_b14 article-title: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method publication-title: SIAM Journal on Matrix Analysis and Applications doi: 10.1137/07069239X – year: 1980 ident: 10.1016/j.neunet.2018.03.003_b16 – start-page: 556 year: 2001 ident: 10.1016/j.neunet.2018.03.003_b18 article-title: Algorithms for non-negative matrix factorization – volume: 28 start-page: 2344 issue: 10 year: 2017 ident: 10.1016/j.neunet.2018.03.003_b8 article-title: A collective neurodynamic optimization approach to nonnegative matrix factorization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2582381 – volume: 28 start-page: 1747 issue: 8 year: 2017 ident: 10.1016/j.neunet.2018.03.003_b27 article-title: A collective neurodynamic approach to distributed constrained optimization publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2549566 – volume: 33 start-page: 1548 issue: 8 year: 2011 ident: 10.1016/j.neunet.2018.03.003_b4 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.231 – volume: 167 start-page: 569 year: 2015 ident: 10.1016/j.neunet.2018.03.003_b5 article-title: An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.033 – volume: 25 start-page: 824 issue: 4 year: 2014 ident: 10.1016/j.neunet.2018.03.003_b12 article-title: A recurrent neural network for solving bilevel linear programming problem publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2013.2280905 – volume: 66 start-page: 373 issue: 3 year: 2007 ident: 10.1016/j.neunet.2018.03.003_b10 article-title: Biconvex sets and optimization with biconvex functions: a survey and extensions publication-title: Mathematical Methods of Operations Research doi: 10.1007/s00186-007-0161-1 – volume: 20 start-page: 1366 issue: 5 year: 2008 ident: 10.1016/j.neunet.2018.03.003_b23 article-title: A one-layer recurrent neural network with a discontinuous activation function for linear programming publication-title: Neural Computation doi: 10.1162/neco.2007.03-07-488 – start-page: 32 year: 2006 ident: 10.1016/j.neunet.2018.03.003_b7 article-title: Csiszars divergences for non-negative matrix factorization. Family of new algorithms – volume: 55 start-page: 20 year: 2014 ident: 10.1016/j.neunet.2018.03.003_b35 article-title: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization publication-title: Neural Networks doi: 10.1016/j.neunet.2014.03.006 – volume: 67 start-page: 328 year: 2017 ident: 10.1016/j.neunet.2018.03.003_b1 article-title: PSI: Patch-based script identification using non-negative matrix factorization publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.02.020 – start-page: 353 year: 2008 ident: 10.1016/j.neunet.2018.03.003_b15 article-title: Toward faster nonnegative matrix factorization. A new algorithm and comparisons – volume: 22 start-page: 2962 issue: 11 year: 2010 ident: 10.1016/j.neunet.2018.03.003_b22 article-title: A novel recurrent neural network with finite-time convergence for linear programming publication-title: Neural Computation doi: 10.1162/NECO_a_00029 – volume: 80 start-page: 110 year: 2016 ident: 10.1016/j.neunet.2018.03.003_b6 article-title: A recurrent neural network for adaptive beamforming and array correction publication-title: Neural Networks doi: 10.1016/j.neunet.2016.04.010 – volume: 106 start-page: 129 issue: 1 year: 2000 ident: 10.1016/j.neunet.2018.03.003_b32 article-title: On the stability of globally projected dynamical systems publication-title: Journal of Optimization Theory and Applications doi: 10.1023/A:1004611224835 – volume: 120 start-page: 655 year: 2013 ident: 10.1016/j.neunet.2018.03.003_b29 article-title: A new one-layer recurrent neural network for nonsmooth pseudoconvex optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.025 – volume: 41 start-page: 1323 issue: 5 year: 2011 ident: 10.1016/j.neunet.2018.03.003_b24 article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – volume: 54 start-page: 4012 issue: 7 year: 2016 ident: 10.1016/j.neunet.2018.03.003_b37 article-title: Biobjective nonnegative matrix factorization: Linear versus kernel-based models publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2016.2535298 – volume: 52 start-page: 155 issue: 1 year: 2007 ident: 10.1016/j.neunet.2018.03.003_b2 article-title: Algorithms and applications for approximate nonnegative matrix factorization publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2006.11.006 – start-page: 283 year: 2010 ident: 10.1016/j.neunet.2018.03.003_b28 article-title: Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence |
SSID | ssj0006843 |
Score | 2.4768693 |
Snippet | This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 63 |
SubjectTerms | Algorithms Biconvex optimization Databases, Factual - utilization Discrete-time projection neural network Neural Networks (Computer) Nonnegative matrix factorization Pattern Recognition, Automated - methods Pattern Recognition, Automated - trends Photic Stimulation - methods Time Factors |
Title | A nonnegative matrix factorization algorithm based on a discrete-time projection neural network |
URI | https://dx.doi.org/10.1016/j.neunet.2018.03.003 https://www.ncbi.nlm.nih.gov/pubmed/29642020 https://www.proquest.com/docview/2024470515 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4P8qjMhKraRKndhkrBCogWKBSNyt-laI2IGglJn47d7FTxFAhMdo5J9b5cZ_j7-4IOTMXHC-cNHPcZSzPnWca7AIzXcl5boTMDPoO3z-I_iC_HXaGK-Sy9oVBWmXc-8OeXu3WsaYdtdl-G4_bjwmYWgGAByYlBlYbogd7LnGWn3_90DxENzDnQJihdO0-V3G8SjcvHTIq024IdcqXmadl8LMyQ9ebZD3iR9oLXdwiK67cJht1bgYal-oOUT1aIodlVAX2plOMxP9JQ3ad6HpJi8kICrPnKUVbZilWUXTTfQckzTDrPI0_alAaI1_Cl8vAG98lg-urp8s-i8kUmAEbNWPOSm3SRBci8aKAQ5z2QljeEc5n3nohRe5Ty11qBZwxMkBmF75jdeETY4ywmu-RBvTbHRBqcgSG0iaZBhuYFPBOLh1PUy9yq0W3SXitQ2VipHFMeDFRNaXsRQXNK9S8SjhGKG0Stmj1FiJt_CEv6-FRv2aMAmPwR8vTejQVLCa8ISlK9zr_ACFAOxLT3jTJfhjmRV_wfhqeJ4f__u4RWcNSIPsek8bsfe5OANLMdKuasy2y2ru56z98A6jm968 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFfSmrkbhaTeLUaY9VBSpbL4DUmxVvUAQBQSvx-czUTiUOCIlj7HFijZd5jmfeAJyZrqALJ82dcBnPc-e5RrvATacQIjeyyAzFDt8O5eAhvxq1RwvQr2NhyK0y7v1hT5_t1rGkFbXZeh-PW3cJmlqJgAcnJRGrjRZhidip2g1Y6l1eD4bzDVl2gvMcynNqUEfQzdy8KjetHDlVpp3Adip-s1C_IdCZJbpYh9UIIVkv9HIDFly1CWt1egYWV-sWqB6ryI3lccbtzV6JjP-LhQQ7MfqSlS-P-DB5emVkziyjIkaRuh8IpjklnmfxXw1JE_klfrkKruPb8HBxft8f8JhPgRs0UxPubKFNmuhSJl6WeI7TXkor2tL5zFsvC5n71AqXWonHjAzBWde3rS59YoyRVosdaGC_3R4wkxM2LGySaTSDSYnvFIUTaeplbrXsNEHUOlQmko1TzosXVXuVPaugeUWaV4kgktIm8Hmr90C28Yd8UQ-P-jFpFNqDP1qe1qOpcD3RJUlZubfpJwoh4Cko800TdsMwz_tCV9RYn-z_-7snsDy4v71RN5fD6wNYoZrg-3sIjcnH1B0hwpno4ziDvwEf4vpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonnegative+matrix+factorization+algorithm+based+on+a+discrete-time+projection+neural+network&rft.jtitle=Neural+networks&rft.au=Che%2C+Hangjun&rft.au=Wang%2C+Jun&rft.date=2018-07-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=103&rft.spage=63&rft.epage=71&rft_id=info:doi/10.1016%2Fj.neunet.2018.03.003&rft.externalDocID=S089360801830087X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |