A nonnegative matrix factorization algorithm based on a discrete-time projection neural network

This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is propo...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 103; pp. 63 - 71
Main Authors Che, Hangjun, Wang, Jun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm.
AbstractList This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm.
This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm.This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm.
Author Wang, Jun
Che, Hangjun
Author_xml – sequence: 1
  givenname: Hangjun
  surname: Che
  fullname: Che, Hangjun
  email: hjche2-c@my.city.edu.hk.com
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29642020$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1PGzEUtKqgktD-A1Ttkctun-1d724PSBEqtBISF3q2vPYzddiP1HYC5dfjkOTSQzk9vaeZ0byZBZmN04iEnFMoKFDxdVWMuBkxFgxoUwAvAPgHMqdN3easbtiMzKFpeS6ggVOyCGEFAKIp-UdyylpRMmAwJ3KZJd0RH1R0W8wGFb17zqzScfLuJR2nMVP9Q1ri7yHrVECT7U6ZcUF7jJhHN2C29tMK9Rs6ufKqTyM-Tf7xEzmxqg_4-TDPyK_r7_dXP_Lbu5ufV8vbXHPBYo6m7jSFTgmwQtW07qwQhlcCLbPGilqUlhqO1IiqrRk0vLWV6ZQFrbUwHT8jF3vd5OTPBkOUQzKIfa9GnDZBpm_LsoaKVgn65QDddAMaufZuUP6vPIaSAN_2AO2nEDxaqV18iyJ65XpJQe4akCu5b0DuGpDAZWogkct_yEf9d2iXexqmkLYOvQza4ajROJ-ClWZy_xd4Bf08pGA
CitedBy_id crossref_primary_10_1137_23M1627304
crossref_primary_10_1016_j_nahs_2020_100881
crossref_primary_10_1007_s12555_021_0236_4
crossref_primary_10_1109_TNNLS_2021_3125457
crossref_primary_10_3390_math11132940
crossref_primary_10_1109_TNNLS_2020_2973760
crossref_primary_10_1016_j_engappai_2024_108274
crossref_primary_10_1109_TCYB_2021_3102941
crossref_primary_10_1155_2022_7665954
crossref_primary_10_1155_2022_4134864
crossref_primary_10_1109_TCYB_2021_3051035
crossref_primary_10_1016_j_compeleceng_2024_109827
crossref_primary_10_1007_s00521_018_3608_9
crossref_primary_10_1016_j_neunet_2022_06_006
crossref_primary_10_1109_TSMC_2023_3331260
crossref_primary_10_3934_mbe_2023556
crossref_primary_10_1016_j_neunet_2024_106348
crossref_primary_10_1109_TNNLS_2019_2957105
crossref_primary_10_1007_s00521_022_07200_w
crossref_primary_10_1016_j_apnum_2024_07_010
crossref_primary_10_1109_TCSS_2023_3296479
crossref_primary_10_3390_electronics13030659
crossref_primary_10_1007_s12652_019_01550_5
crossref_primary_10_1016_j_neunet_2021_03_039
crossref_primary_10_1155_2022_7104750
crossref_primary_10_26599_BDMA_2024_9020055
crossref_primary_10_1155_2022_1973777
crossref_primary_10_1162_neco_a_01294
crossref_primary_10_1155_2022_5813577
crossref_primary_10_1016_j_neunet_2019_02_002
crossref_primary_10_1016_j_neunet_2022_10_018
crossref_primary_10_1109_TNNLS_2018_2884788
crossref_primary_10_1155_2022_3345037
crossref_primary_10_1109_TCE_2023_3301067
crossref_primary_10_1109_TCYB_2021_3090204
crossref_primary_10_1007_s11063_021_10628_1
crossref_primary_10_1109_TNNLS_2019_2918984
crossref_primary_10_1016_j_neunet_2021_01_012
crossref_primary_10_3934_mmc_2023025
crossref_primary_10_1155_2022_8005321
crossref_primary_10_1155_2022_4282569
crossref_primary_10_1016_j_neunet_2023_02_016
crossref_primary_10_1016_j_neunet_2024_106801
crossref_primary_10_1109_TETCI_2024_3400852
crossref_primary_10_1016_j_sigpro_2023_109341
crossref_primary_10_1016_j_neunet_2024_106323
crossref_primary_10_1016_j_ins_2023_03_119
crossref_primary_10_1109_TSC_2021_3069108
crossref_primary_10_1016_j_neunet_2022_07_018
Cites_doi 10.1162/neco.2008.04-08-771
10.1162/neco.2007.19.10.2756
10.1016/j.neunet.2014.09.009
10.1016/0893-6080(94)90041-8
10.1109/TSP.2012.2190406
10.1109/TNN.2006.879774
10.1109/TNNLS.2015.2481006
10.1038/44565
10.1016/j.neunet.2004.05.006
10.1109/TNNLS.2013.2244908
10.1016/j.neunet.2013.11.007
10.1109/TNNLS.2016.2524619
10.1109/TCSI.2004.830694
10.1137/07069239X
10.1109/TNNLS.2016.2582381
10.1109/TNNLS.2016.2549566
10.1109/TPAMI.2010.231
10.1016/j.neucom.2015.04.033
10.1109/TNNLS.2013.2280905
10.1007/s00186-007-0161-1
10.1162/neco.2007.03-07-488
10.1016/j.neunet.2014.03.006
10.1016/j.patcog.2017.02.020
10.1162/NECO_a_00029
10.1016/j.neunet.2016.04.010
10.1023/A:1004611224835
10.1016/j.neucom.2013.01.025
10.1109/TGRS.2016.2535298
10.1016/j.csda.2006.11.006
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neunet.2018.03.003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 71
ExternalDocumentID 29642020
10_1016_j_neunet_2018_03_003
S089360801830087X
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61673330
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Research Grants Council, Hong Kong
  grantid: 14207614; 11208517
  funderid: http://dx.doi.org/10.13039/501100002920
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c362t-ed7bc10ba60f6a717bf66d356ef2fdf6764f1d3e1d659720839f5dbaf0ccc6db3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Fri Jul 11 07:15:23 EDT 2025
Thu Apr 03 07:06:25 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Tue Jul 01 01:24:32 EDT 2025
Fri Feb 23 02:28:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biconvex optimization
Nonnegative matrix factorization
Discrete-time projection neural network
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c362t-ed7bc10ba60f6a717bf66d356ef2fdf6764f1d3e1d659720839f5dbaf0ccc6db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1305-5735
PMID 29642020
PQID 2024470515
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2024470515
pubmed_primary_29642020
crossref_citationtrail_10_1016_j_neunet_2018_03_003
crossref_primary_10_1016_j_neunet_2018_03_003
elsevier_sciencedirect_doi_10_1016_j_neunet_2018_03_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
2018-Jul
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cichocki, Zdunek, Amari (b7) 2006
Berry, Browne, Langville, Pauca, Plemmons (b2) 2007; 52
Guan, Tao, Luo, Yuan (b11) 2012; 60
Fvotte, Bertin, Durrieu (b9) 2009; 21
Nakano, Kameoka, Le Roux, Kitano, Ono, Sagayama (b28) 2010
Yan, Wang, Li (b35) 2014; 55
Fan, Wang (b8) 2017; 28
Kim, Park (b14) 2008; 30
Hu, Wang (b13) 2006; 17
Liu, Wang (b23) 2008; 20
Liu, Wang (b26) 2016; 27
Che, Li, He, Huang (b5) 2015; 167
Liu, Yang, Wang (b27) 2017; 28
Boyd, Vandenberghe (b3) 2004
Che, Li, He, Huang (b6) 2016; 80
Liu, Cao, Chen (b22) 2010; 22
Cai, He, Han, Huang (b4) 2011; 33
Wang (b30) 1994; 7
Qin, Bian, Xue (b29) 2013; 120
Zhu, Honeine (b37) 2016; 54
Lee, Seung (b18) 2001
Gorski, Pfeuffer, Klamroth (b10) 2007; 66
Kim, Park (b15) 2008
Li, Yan, Wang (b20) 2015; 61
Lin (b21) 2007; 19
Xia, Wang (b32) 2000; 106
He, Li, Huang, Li, Huang (b12) 2014; 25
Xia, Feng, Wang (b31) 2004; 17
Liu, Wang (b24) 2011; 41
Liu, Wang (b25) 2013; 24
Xia, Wang (b33) 2004; 51
Li, Yan, Wang (b19) 2014; 50
Arabnejad, Moghaddam, Cheriet (b1) 2017; 67
Kinderlehrer, Stampacchia (b16) 1980
Lee, Seung (b17) 1999; 401
Yan, Fan, Wang (b34) 2017; 28
Fan (10.1016/j.neunet.2018.03.003_b8) 2017; 28
Lee (10.1016/j.neunet.2018.03.003_b17) 1999; 401
Liu (10.1016/j.neunet.2018.03.003_b23) 2008; 20
Cai (10.1016/j.neunet.2018.03.003_b4) 2011; 33
Hu (10.1016/j.neunet.2018.03.003_b13) 2006; 17
Kim (10.1016/j.neunet.2018.03.003_b14) 2008; 30
Li (10.1016/j.neunet.2018.03.003_b20) 2015; 61
Liu (10.1016/j.neunet.2018.03.003_b27) 2017; 28
Xia (10.1016/j.neunet.2018.03.003_b32) 2000; 106
Yan (10.1016/j.neunet.2018.03.003_b34) 2017; 28
Zhu (10.1016/j.neunet.2018.03.003_b37) 2016; 54
Che (10.1016/j.neunet.2018.03.003_b6) 2016; 80
Nakano (10.1016/j.neunet.2018.03.003_b28) 2010
Cichocki (10.1016/j.neunet.2018.03.003_b7) 2006
He (10.1016/j.neunet.2018.03.003_b12) 2014; 25
Wang (10.1016/j.neunet.2018.03.003_b30) 1994; 7
Liu (10.1016/j.neunet.2018.03.003_b25) 2013; 24
Kinderlehrer (10.1016/j.neunet.2018.03.003_b16) 1980
Lee (10.1016/j.neunet.2018.03.003_b18) 2001
Qin (10.1016/j.neunet.2018.03.003_b29) 2013; 120
Li (10.1016/j.neunet.2018.03.003_b19) 2014; 50
Gorski (10.1016/j.neunet.2018.03.003_b10) 2007; 66
Xia (10.1016/j.neunet.2018.03.003_b33) 2004; 51
Xia (10.1016/j.neunet.2018.03.003_b31) 2004; 17
Liu (10.1016/j.neunet.2018.03.003_b24) 2011; 41
Liu (10.1016/j.neunet.2018.03.003_b26) 2016; 27
Che (10.1016/j.neunet.2018.03.003_b5) 2015; 167
Lin (10.1016/j.neunet.2018.03.003_b21) 2007; 19
Kim (10.1016/j.neunet.2018.03.003_b15) 2008
Berry (10.1016/j.neunet.2018.03.003_b2) 2007; 52
Guan (10.1016/j.neunet.2018.03.003_b11) 2012; 60
Fvotte (10.1016/j.neunet.2018.03.003_b9) 2009; 21
Arabnejad (10.1016/j.neunet.2018.03.003_b1) 2017; 67
Liu (10.1016/j.neunet.2018.03.003_b22) 2010; 22
Yan (10.1016/j.neunet.2018.03.003_b35) 2014; 55
Boyd (10.1016/j.neunet.2018.03.003_b3) 2004
References_xml – volume: 7
  start-page: 629
  year: 1994
  end-page: 641
  ident: b30
  article-title: A deterministic annealing neural network for convex programming
  publication-title: Neural Networks
– start-page: 353
  year: 2008
  end-page: 362
  ident: b15
  article-title: Toward faster nonnegative matrix factorization. A new algorithm and comparisons
  publication-title: Proceedings eighth IEEE international conference on data mining
– start-page: 283
  year: 2010
  end-page: 288
  ident: b28
  article-title: Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with
  publication-title: 2010 IEEE international workshop on machine learning for signal processing
– volume: 106
  start-page: 129
  year: 2000
  end-page: 150
  ident: b32
  article-title: On the stability of globally projected dynamical systems
  publication-title: Journal of Optimization Theory and Applications
– volume: 55
  start-page: 20
  year: 2014
  end-page: 29
  ident: b35
  article-title: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization
  publication-title: Neural Networks
– volume: 60
  start-page: 2882
  year: 2012
  end-page: 2898
  ident: b11
  article-title: NeNMF: an optimal gradient method for nonnegative matrix factorization
  publication-title: IEEE Transactions on Signal Processing
– volume: 25
  start-page: 824
  year: 2014
  end-page: 830
  ident: b12
  article-title: A recurrent neural network for solving bilevel linear programming problem
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 1980
  ident: b16
  article-title: An introduction to variational inequalities and their applications
– volume: 21
  start-page: 793
  year: 2009
  end-page: 830
  ident: b9
  article-title: Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis
  publication-title: Neural Computation
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: b17
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 30
  start-page: 713
  year: 2008
  end-page: 730
  ident: b14
  article-title: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
  publication-title: SIAM Journal on Matrix Analysis and Applications
– start-page: 556
  year: 2001
  end-page: 562
  ident: b18
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Advances in neural information processing systems, Vol. 13
– year: 2004
  ident: b3
  article-title: Convex optimization
– volume: 24
  start-page: 812
  year: 2013
  end-page: 824
  ident: b25
  article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 17
  start-page: 1003
  year: 2004
  end-page: 1015
  ident: b31
  article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations
  publication-title: Neural Networks
– volume: 54
  start-page: 4012
  year: 2016
  end-page: 4022
  ident: b37
  article-title: Biobjective nonnegative matrix factorization: Linear versus kernel-based models
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 167
  start-page: 569
  year: 2015
  end-page: 577
  ident: b5
  article-title: An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization
  publication-title: Neurocomputing
– volume: 51
  start-page: 1385
  year: 2004
  end-page: 1394
  ident: b33
  article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints
  publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers
– volume: 61
  start-page: 10
  year: 2015
  end-page: 21
  ident: b20
  article-title: A one-layer recurrent neural network for constrained nonconvex optimization
  publication-title: Neural Networks
– volume: 28
  start-page: 1747
  year: 2017
  end-page: 1758
  ident: b27
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 50
  start-page: 79
  year: 2014
  end-page: 89
  ident: b19
  article-title: A one-layer recurrent neural network for constrained nonsmooth invex optimization
  publication-title: Neural Networks
– volume: 52
  start-page: 155
  year: 2007
  end-page: 173
  ident: b2
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Computational Statistics & Data Analysis
– volume: 33
  start-page: 1548
  year: 2011
  end-page: 1560
  ident: b4
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 32
  year: 2006
  end-page: 39
  ident: b7
  article-title: Csiszars divergences for non-negative matrix factorization. Family of new algorithms
  publication-title: International conference on independent component analysis and signal separation
– volume: 22
  start-page: 2962
  year: 2010
  end-page: 2978
  ident: b22
  article-title: A novel recurrent neural network with finite-time convergence for linear programming
  publication-title: Neural Computation
– volume: 20
  start-page: 1366
  year: 2008
  end-page: 1383
  ident: b23
  article-title: A one-layer recurrent neural network with a discontinuous activation function for linear programming
  publication-title: Neural Computation
– volume: 80
  start-page: 110
  year: 2016
  end-page: 117
  ident: b6
  article-title: A recurrent neural network for adaptive beamforming and array correction
  publication-title: Neural Networks
– volume: 66
  start-page: 373
  year: 2007
  end-page: 407
  ident: b10
  article-title: Biconvex sets and optimization with biconvex functions: a survey and extensions
  publication-title: Mathematical Methods of Operations Research
– volume: 17
  start-page: 1487
  year: 2006
  end-page: 1499
  ident: b13
  article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network
  publication-title: IEEE Transactions on Neural Networks
– volume: 28
  start-page: 1206
  year: 2017
  end-page: 1215
  ident: b34
  article-title: A collective neurodynamic approach to constrained global optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 28
  start-page: 2344
  year: 2017
  end-page: 2356
  ident: b8
  article-title: A collective neurodynamic optimization approach to nonnegative matrix factorization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 67
  start-page: 328
  year: 2017
  end-page: 339
  ident: b1
  article-title: PSI: Patch-based script identification using non-negative matrix factorization
  publication-title: Pattern Recognition
– volume: 41
  start-page: 1323
  year: 2011
  end-page: 1333
  ident: b24
  article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 27
  start-page: 698
  year: 2016
  end-page: 707
  ident: b26
  article-title: L1-minimization algorithms for sparse signal reconstruction based on a projection neural network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 120
  start-page: 655
  year: 2013
  end-page: 662
  ident: b29
  article-title: A new one-layer recurrent neural network for nonsmooth pseudoconvex optimization
  publication-title: Neurocomputing
– volume: 19
  start-page: 2756
  year: 2007
  end-page: 2779
  ident: b21
  article-title: Projected gradient methods for nonnegative matrix factorization
  publication-title: Neural Computation
– volume: 21
  start-page: 793
  issue: 3
  year: 2009
  ident: 10.1016/j.neunet.2018.03.003_b9
  article-title: Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis
  publication-title: Neural Computation
  doi: 10.1162/neco.2008.04-08-771
– volume: 19
  start-page: 2756
  issue: 10
  year: 2007
  ident: 10.1016/j.neunet.2018.03.003_b21
  article-title: Projected gradient methods for nonnegative matrix factorization
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.19.10.2756
– volume: 61
  start-page: 10
  year: 2015
  ident: 10.1016/j.neunet.2018.03.003_b20
  article-title: A one-layer recurrent neural network for constrained nonconvex optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.009
– volume: 7
  start-page: 629
  issue: 4
  year: 1994
  ident: 10.1016/j.neunet.2018.03.003_b30
  article-title: A deterministic annealing neural network for convex programming
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)90041-8
– volume: 60
  start-page: 2882
  issue: 6
  year: 2012
  ident: 10.1016/j.neunet.2018.03.003_b11
  article-title: NeNMF: an optimal gradient method for nonnegative matrix factorization
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2012.2190406
– volume: 17
  start-page: 1487
  issue: 6
  year: 2006
  ident: 10.1016/j.neunet.2018.03.003_b13
  article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.879774
– year: 2004
  ident: 10.1016/j.neunet.2018.03.003_b3
– volume: 27
  start-page: 698
  issue: 3
  year: 2016
  ident: 10.1016/j.neunet.2018.03.003_b26
  article-title: L1-minimization algorithms for sparse signal reconstruction based on a projection neural network
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2481006
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.neunet.2018.03.003_b17
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 17
  start-page: 1003
  issue: 7
  year: 2004
  ident: 10.1016/j.neunet.2018.03.003_b31
  article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2004.05.006
– volume: 24
  start-page: 812
  issue: 5
  year: 2013
  ident: 10.1016/j.neunet.2018.03.003_b25
  article-title: A one-layer projection neural network for nonsmooth optimization subject to linear equalities and bound constraints
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2244908
– volume: 50
  start-page: 79
  year: 2014
  ident: 10.1016/j.neunet.2018.03.003_b19
  article-title: A one-layer recurrent neural network for constrained nonsmooth invex optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.11.007
– volume: 28
  start-page: 1206
  issue: 5
  year: 2017
  ident: 10.1016/j.neunet.2018.03.003_b34
  article-title: A collective neurodynamic approach to constrained global optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2524619
– volume: 51
  start-page: 1385
  issue: 7
  year: 2004
  ident: 10.1016/j.neunet.2018.03.003_b33
  article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints
  publication-title: IEEE Transactions on Circuits and Systems. I. Regular Papers
  doi: 10.1109/TCSI.2004.830694
– volume: 30
  start-page: 713
  issue: 2
  year: 2008
  ident: 10.1016/j.neunet.2018.03.003_b14
  article-title: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/07069239X
– year: 1980
  ident: 10.1016/j.neunet.2018.03.003_b16
– start-page: 556
  year: 2001
  ident: 10.1016/j.neunet.2018.03.003_b18
  article-title: Algorithms for non-negative matrix factorization
– volume: 28
  start-page: 2344
  issue: 10
  year: 2017
  ident: 10.1016/j.neunet.2018.03.003_b8
  article-title: A collective neurodynamic optimization approach to nonnegative matrix factorization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2582381
– volume: 28
  start-page: 1747
  issue: 8
  year: 2017
  ident: 10.1016/j.neunet.2018.03.003_b27
  article-title: A collective neurodynamic approach to distributed constrained optimization
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2549566
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  ident: 10.1016/j.neunet.2018.03.003_b4
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.231
– volume: 167
  start-page: 569
  year: 2015
  ident: 10.1016/j.neunet.2018.03.003_b5
  article-title: An intelligent method of swarm neural networks for equalities-constrained nonconvex optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.033
– volume: 25
  start-page: 824
  issue: 4
  year: 2014
  ident: 10.1016/j.neunet.2018.03.003_b12
  article-title: A recurrent neural network for solving bilevel linear programming problem
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2013.2280905
– volume: 66
  start-page: 373
  issue: 3
  year: 2007
  ident: 10.1016/j.neunet.2018.03.003_b10
  article-title: Biconvex sets and optimization with biconvex functions: a survey and extensions
  publication-title: Mathematical Methods of Operations Research
  doi: 10.1007/s00186-007-0161-1
– volume: 20
  start-page: 1366
  issue: 5
  year: 2008
  ident: 10.1016/j.neunet.2018.03.003_b23
  article-title: A one-layer recurrent neural network with a discontinuous activation function for linear programming
  publication-title: Neural Computation
  doi: 10.1162/neco.2007.03-07-488
– start-page: 32
  year: 2006
  ident: 10.1016/j.neunet.2018.03.003_b7
  article-title: Csiszars divergences for non-negative matrix factorization. Family of new algorithms
– volume: 55
  start-page: 20
  year: 2014
  ident: 10.1016/j.neunet.2018.03.003_b35
  article-title: A collective neurodynamic optimization approach to bound-constrained nonconvex optimization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.03.006
– volume: 67
  start-page: 328
  year: 2017
  ident: 10.1016/j.neunet.2018.03.003_b1
  article-title: PSI: Patch-based script identification using non-negative matrix factorization
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.02.020
– start-page: 353
  year: 2008
  ident: 10.1016/j.neunet.2018.03.003_b15
  article-title: Toward faster nonnegative matrix factorization. A new algorithm and comparisons
– volume: 22
  start-page: 2962
  issue: 11
  year: 2010
  ident: 10.1016/j.neunet.2018.03.003_b22
  article-title: A novel recurrent neural network with finite-time convergence for linear programming
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00029
– volume: 80
  start-page: 110
  year: 2016
  ident: 10.1016/j.neunet.2018.03.003_b6
  article-title: A recurrent neural network for adaptive beamforming and array correction
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2016.04.010
– volume: 106
  start-page: 129
  issue: 1
  year: 2000
  ident: 10.1016/j.neunet.2018.03.003_b32
  article-title: On the stability of globally projected dynamical systems
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1023/A:1004611224835
– volume: 120
  start-page: 655
  year: 2013
  ident: 10.1016/j.neunet.2018.03.003_b29
  article-title: A new one-layer recurrent neural network for nonsmooth pseudoconvex optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.025
– volume: 41
  start-page: 1323
  issue: 5
  year: 2011
  ident: 10.1016/j.neunet.2018.03.003_b24
  article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– volume: 54
  start-page: 4012
  issue: 7
  year: 2016
  ident: 10.1016/j.neunet.2018.03.003_b37
  article-title: Biobjective nonnegative matrix factorization: Linear versus kernel-based models
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2016.2535298
– volume: 52
  start-page: 155
  issue: 1
  year: 2007
  ident: 10.1016/j.neunet.2018.03.003_b2
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2006.11.006
– start-page: 283
  year: 2010
  ident: 10.1016/j.neunet.2018.03.003_b28
  article-title: Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence
SSID ssj0006843
Score 2.4768693
Snippet This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms Algorithms
Biconvex optimization
Databases, Factual - utilization
Discrete-time projection neural network
Neural Networks (Computer)
Nonnegative matrix factorization
Pattern Recognition, Automated - methods
Pattern Recognition, Automated - trends
Photic Stimulation - methods
Time Factors
Title A nonnegative matrix factorization algorithm based on a discrete-time projection neural network
URI https://dx.doi.org/10.1016/j.neunet.2018.03.003
https://www.ncbi.nlm.nih.gov/pubmed/29642020
https://www.proquest.com/docview/2024470515
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4P8qjMhKraRKndhkrBCogWKBSNyt-laI2IGglJn47d7FTxFAhMdo5J9b5cZ_j7-4IOTMXHC-cNHPcZSzPnWca7AIzXcl5boTMDPoO3z-I_iC_HXaGK-Sy9oVBWmXc-8OeXu3WsaYdtdl-G4_bjwmYWgGAByYlBlYbogd7LnGWn3_90DxENzDnQJihdO0-V3G8SjcvHTIq024IdcqXmadl8LMyQ9ebZD3iR9oLXdwiK67cJht1bgYal-oOUT1aIodlVAX2plOMxP9JQ3ad6HpJi8kICrPnKUVbZilWUXTTfQckzTDrPI0_alAaI1_Cl8vAG98lg-urp8s-i8kUmAEbNWPOSm3SRBci8aKAQ5z2QljeEc5n3nohRe5Ty11qBZwxMkBmF75jdeETY4ywmu-RBvTbHRBqcgSG0iaZBhuYFPBOLh1PUy9yq0W3SXitQ2VipHFMeDFRNaXsRQXNK9S8SjhGKG0Stmj1FiJt_CEv6-FRv2aMAmPwR8vTejQVLCa8ISlK9zr_ACFAOxLT3jTJfhjmRV_wfhqeJ4f__u4RWcNSIPsek8bsfe5OANLMdKuasy2y2ru56z98A6jm968
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BOcCFfSmrkbhaTeLUaY9VBSpbL4DUmxVvUAQBQSvx-czUTiUOCIlj7HFijZd5jmfeAJyZrqALJ82dcBnPc-e5RrvATacQIjeyyAzFDt8O5eAhvxq1RwvQr2NhyK0y7v1hT5_t1rGkFbXZeh-PW3cJmlqJgAcnJRGrjRZhidip2g1Y6l1eD4bzDVl2gvMcynNqUEfQzdy8KjetHDlVpp3Adip-s1C_IdCZJbpYh9UIIVkv9HIDFly1CWt1egYWV-sWqB6ryI3lccbtzV6JjP-LhQQ7MfqSlS-P-DB5emVkziyjIkaRuh8IpjklnmfxXw1JE_klfrkKruPb8HBxft8f8JhPgRs0UxPubKFNmuhSJl6WeI7TXkor2tL5zFsvC5n71AqXWonHjAzBWde3rS59YoyRVosdaGC_3R4wkxM2LGySaTSDSYnvFIUTaeplbrXsNEHUOlQmko1TzosXVXuVPaugeUWaV4kgktIm8Hmr90C28Yd8UQ-P-jFpFNqDP1qe1qOpcD3RJUlZubfpJwoh4Cko800TdsMwz_tCV9RYn-z_-7snsDy4v71RN5fD6wNYoZrg-3sIjcnH1B0hwpno4ziDvwEf4vpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+nonnegative+matrix+factorization+algorithm+based+on+a+discrete-time+projection+neural+network&rft.jtitle=Neural+networks&rft.au=Che%2C+Hangjun&rft.au=Wang%2C+Jun&rft.date=2018-07-01&rft.pub=Elsevier+Ltd&rft.issn=0893-6080&rft.eissn=1879-2782&rft.volume=103&rft.spage=63&rft.epage=71&rft_id=info:doi/10.1016%2Fj.neunet.2018.03.003&rft.externalDocID=S089360801830087X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon