A nonnegative matrix factorization algorithm based on a discrete-time projection neural network
This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is propo...
Saved in:
Published in | Neural networks Vol. 103; pp. 63 - 71 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents an algorithm for nonnegative matrix factorization based on a biconvex optimization formulation. First, a discrete-time projection neural network is introduced. An upper bound of its step size is derived to guarantee the stability of the neural network. Then, an algorithm is proposed based on the discrete-time projection neural network and a backtracking step-size adaptation. The proposed algorithm is proven to be able to reduce the objective function value iteratively until attaining a partial optimum of the formulated biconvex optimization problem. Experimental results based on various data sets are presented to substantiate the efficacy of the algorithm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-6080 1879-2782 1879-2782 |
DOI: | 10.1016/j.neunet.2018.03.003 |