A testing scenario for probabilistic processes
We introduce a notion of finite testing, based on statistical hypothesis tests, via a variant of the well-known trace machine. Under this scenario, two processes are deemed observationally equivalent if they cannot be distinguished by any finite test. We consider processes modeled as image finite pr...
Saved in:
Published in | Journal of the ACM Vol. 54; no. 6; p. 29 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Association for Computing Machinery
01.12.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We introduce a notion of finite testing, based on statistical hypothesis tests, via a variant of the well-known trace machine. Under this scenario, two processes are deemed observationally equivalent if they cannot be distinguished by any finite test. We consider processes modeled as image finite probabilistic automata and prove that our notion of observational equivalence coincides with the trace distribution equivalence proposed by Segala. Along the way, we give an explicit characterization of the set of probabilistic generalize the Approximation Induction Principle by defining an also prove limit and convex closure properties of trace distributions in an appropriate metric space. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
ISSN: | 0004-5411 1557-735X |
DOI: | 10.1145/1314690.1314693 |