Silk sericin conjugated magnesium oxide nanoparticles for its antioxidant, anti-aging, and anti-biofilm activities
The Silk sericin protein was conjugated with magnesium oxide (MgO) nanoparticles to form SS-MgO-NPs . UV, XRD, FTIR, SEM, DLS, and EDX were used to confirm the formation of SS-MgO-NPs. The absorption band of SS-MgO-NPs using UV–visible spectra was observed at 310 nm, with an average size of the nano...
Saved in:
Published in | Environmental research Vol. 223; p. 115421 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Silk sericin protein was conjugated with magnesium oxide (MgO) nanoparticles to form SS-MgO-NPs . UV, XRD, FTIR, SEM, DLS, and EDX were used to confirm the formation of SS-MgO-NPs. The absorption band of SS-MgO-NPs using UV–visible spectra was observed at 310 nm, with an average size of the nanoparticles was 65–88 nm analyzed from DLS. The presence of alcohol, CN, and CC, alkanes, alkenes, and cis alkenes, in silk sericin, is confirmed by FT-IR and may act as a stabilizing agent. Later SS-MgO-NPs were evaluated for antioxidant, antibacterial, anti-biofilm, ,anti-aging, and anticancer properties. The SS-MgO-NPs inhibited the formation of biofilm of Pseudomonas aeruginosa and Bacillus cereus. The blood compatibility of SS-MgO-NPs, delaying coagulation was observed using human, blood, and goat blood samples. The SS-MgO-NPs exhibited significant anticancer activity on MCF-7 (IC50 207.6 μg/mL) cancer cell lines. Correspondingly, SS-MgO-NPs demonstrated dose-dependent inhibition of the enzymes in the following order collagenase > elastase > tyrosinase > hyaluronidase, with IC50 values of 75.3, 85.3, 133.6, and 156.3 μgmL−1, respectively. This exhibits the compoundposses anti-aging properties. So, in in vitro settings, SS-MgO-NPs can be used as an antibacterial, anti-aging, and anticancer agent. Additionally, in vivo research is necessary to validate its therapeutic applications. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0013-9351 1096-0953 |
DOI: | 10.1016/j.envres.2023.115421 |