Time course comparison of cell-cycle protein expression following partial hepatectomy and WY14,643-induced hepatic cell proliferation in F344 rats
During recent years, there has been an extensive research focus in the area of cell-cycle control in eukaryotes and the relationship that exists between cell proliferation and cancer. The eukaryotic cell-cycle is governed by signal transduction pathways mediated by complexes of cyclin dependent kina...
Saved in:
Published in | Carcinogenesis (New York) Vol. 18; no. 5; pp. 935 - 941 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.05.1997
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | During recent years, there has been an extensive research focus in the area of cell-cycle control in eukaryotes and the relationship that exists between cell proliferation and cancer. The eukaryotic cell-cycle is governed by signal transduction pathways mediated by complexes of cyclin dependent kinases (CDK) and their partner cyclin proteins. This study was performed to identify differences in cell-cycle control protein expression following physical and chemical stimuli of hepatic cell growth. Protein levels of cell cycle mediators, cyclin dependent kinases (CDK 1,2,4,5), cyclin proteins (A,B,D1-D3 and E), proliferating cell nuclear antigen (PCNA), tumor suppressor proteins (p53 and Rb), and CDK inhibitory proteins (p16Ink4, p21Waf1 and p27Kip1) were examined in F344 rats following 70% partial hepatectomy or a single dose of WY14,643 over 96- and 48-h time courses, respectively. CDK1 (p34cdc2) and PCNA protein concentrations, quantified by ELISA, were significantly increased beginning at the 24-h time point and maximal at 48 h (6.9- and 3.7-fold for partial hepatectomy and 4.2- and 3.3-fold for WY14,643, respectively). Differential effects were observed with the G1 cell-cycle mediators CDK4, CDK5, and cyclin D3, p21Waf1 and p27Kip1 CDK inhibitory protein concentrations rose in accordance with the induction of DNA synthesis and histone H1 kinase activity. In addition, there were dramatic differences in p53 protein expression patterns following partial hepatectomy versus WY14,643 dosing. Because non-genotoxic hepatocarcinogens are known to induce cellular proliferation, data generated from this study may aid in elucidating the specific hepatocarcinogenic signal transduction pathways stimulated by non-genotoxic carcinogens. |
---|---|
ISSN: | 0143-3334 1460-2180 1460-2180 |
DOI: | 10.1093/carcin/18.5.935 |