A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information

Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estim...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 82; pp. 30 - 38
Main Authors Cui, Dong, Pu, Weiting, Liu, Jing, Bian, Zhijie, Li, Qiuli, Wang, Lei, Gu, Guanghua
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estimator measure to generate a new method named S-estimator based normalized weighted-permutation mutual information (SNWPMI) for analyzing multi-channel electroencephalographic (EEG) synchronization strength. The performances including the effects of time delay, embedding dimension, coupling coefficients, signal to noise ratios (SNRs) and data length of the NWPMI are evaluated by using Coupled Henon mapping model. The results show that the NWPMI is superior in describing the synchronization compared with the normalized permutation mutual information (NPMI). Furthermore, the proposed SNWPMI method is applied to analyze scalp EEG data from 26 amnestic mild cognitive impairment (aMCI) subjects and 20 age-matched controls with normal cognitive function, who both suffer from type 2 diabetes mellitus (T2DM). The proposed methods NWPMI and SNWPMI are suggested to be an effective index to estimate the synchronization strength.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2016.06.004