The bone marrow hematopoietic niche and its adaptation to infection

Hematopoiesis is responsible for the formation of all blood cells from hematopoietic stem cells (HSC) in the bone marrow (BM). It is a highly regulated process, in order to adapt its cellular output to changing body requirements. Specific microenvironmental conditions within the BM must exist in ord...

Full description

Saved in:
Bibliographic Details
Published inSeminars in cell & developmental biology Vol. 112; pp. 37 - 48
Main Authors Gomes, Ana Cordeiro, Saraiva, Margarida, Gomes, Maria Salomé
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hematopoiesis is responsible for the formation of all blood cells from hematopoietic stem cells (HSC) in the bone marrow (BM). It is a highly regulated process, in order to adapt its cellular output to changing body requirements. Specific microenvironmental conditions within the BM must exist in order to maintain HSC pluripotency and self-renewal, as well as to ensure appropriate differentiation of progenitor cells towards each hematopoietic lineage. Those conditions were coined “the hematopoietic niche” and their identity in terms of cell types, location and soluble molecular components has been the subject of intense research in the last decades. Infections are one of the environmental challenges to which hematopoiesis must respond, to feed the immune system with functional cell components and compensate for cellular losses. However, how infections impact the bone marrow hematopoietic niche(s) remains elusive and most of the mechanisms involved are still largely unknown. Here, we review the most recent advances on our knowledge on the hematopoietic niche composition and regulation during homeostasis and also on how the niche responds to infectious stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1084-9521
1096-3634
1096-3634
DOI:10.1016/j.semcdb.2020.05.014